Cargando…
Potential Early Identification of a Large Campylobacter Outbreak Using Alternative Surveillance Data Sources: Autoregressive Modelling and Spatiotemporal Clustering
BACKGROUND: Over one-third of the population of Havelock North, New Zealand, approximately 5500 people, were estimated to have been affected by campylobacteriosis in a large waterborne outbreak. Cases reported through the notifiable disease surveillance system (notified case reports) are inevitably...
Autores principales: | Adnan, Mehnaz, Gao, Xiaoying, Bai, Xiaohan, Newbern, Elizabeth, Sherwood, Jill, Jones, Nicholas, Baker, Michael, Wood, Tim, Gao, Wei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7530686/ https://www.ncbi.nlm.nih.gov/pubmed/32940617 http://dx.doi.org/10.2196/18281 |
Ejemplares similares
-
Mildly Explosive Autoregression with Strong Mixing Errors
por: Liu, Xian, et al.
Publicado: (2022) -
An Autoregressive Integrated Moving Average Model for Predicting Varicella Outbreaks — China, 2019
por: Wang, Miaomiao, et al.
Publicado: (2023) -
Spatiotemporal-based clusters as a method for dengue surveillance
por: Romero Canal, Mayara, et al.
Publicado: (2017) -
Autoregressive optimal transport models
por: Zhu, Changbo, et al.
Publicado: (2023) -
Forecasting the prevalence of COVID-19 outbreak in Egypt using nonlinear autoregressive artificial neural networks
por: Saba, Amal I., et al.
Publicado: (2020)