Cargando…

A three-order-parameter bistable magnetoelectric multiferroic metal

Using first-principles calculations we predict that the layered-perovskite metal Bi(5)Mn(5)O(17) is a ferromagnet, ferroelectric, and ferrotoroid which may realize the long sought-after goal of a room-temperature ferromagnetic single-phase multiferroic with large, strongly coupled, primary-order pol...

Descripción completa

Detalles Bibliográficos
Autores principales: Urru, Andrea, Ricci, Francesco, Filippetti, Alessio, Íñiguez, Jorge, Fiorentini, Vincenzo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7530708/
https://www.ncbi.nlm.nih.gov/pubmed/33004814
http://dx.doi.org/10.1038/s41467-020-18664-6
Descripción
Sumario:Using first-principles calculations we predict that the layered-perovskite metal Bi(5)Mn(5)O(17) is a ferromagnet, ferroelectric, and ferrotoroid which may realize the long sought-after goal of a room-temperature ferromagnetic single-phase multiferroic with large, strongly coupled, primary-order polarization and magnetization. Bi(5)Mn(5)O(17) has two nearly energy-degenerate ground states with mutually orthogonal vector order parameters (polarization, magnetization, ferrotoroidicity), which can be rotated globally by switching between ground states. Giant cross-coupling magnetoelectric and magnetotoroidic effects, as well as optical non-reciprocity, are thus expected. Importantly, Bi(5)Mn(5)O(17) should be thermodynamically stable in O-rich growth conditions, and hence experimentally accessible.