Cargando…
Collective almost synchronization-based model to extract and predict features of EEG signals
Understanding the brain is important in the fields of science, medicine, and engineering. A promising approach to better understand the brain is through computing models. These models were adjusted to reproduce data collected from the brain. One of the most commonly used types of data in neuroscienc...
Autores principales: | Nguyen, Phuong Thi Mai, Hayashi, Yoshikatsu, Baptista, Murilo Da Silva, Kondo, Toshiyuki |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7530765/ https://www.ncbi.nlm.nih.gov/pubmed/33004963 http://dx.doi.org/10.1038/s41598-020-73346-z |
Ejemplares similares
-
Collective Almost Synchronisation in Complex Networks
por: Baptista, Murilo S., et al.
Publicado: (2012) -
EEG dynamical network analysis method reveals the neural signature of visual-motor coordination
por: Li, Xinzhe, et al.
Publicado: (2020) -
Trends in EEG signal feature extraction applications
por: Singh, Anupreet Kaur, et al.
Publicado: (2023) -
Synchronization-based control for a collaborative robot
por: Eberle, Henry, et al.
Publicado: (2020) -
Almost-perfect signal detection
por: Davison, Anthony
Publicado: (2019)