Cargando…
Edge-guided second-order total generalized variation for Gaussian noise removal from depth map
Total generalized variation models have recently demonstrated high-quality denoising capacity for single image. In this paper, we present an accurate denoising method for depth map. Our method uses a weighted second-order total generalized variational model for Gaussian noise removal. By fusing an e...
Autores principales: | Li, Shuaihao, Zhang, Bin, Yang, Xinfeng, Zhu, Weiping |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7530766/ https://www.ncbi.nlm.nih.gov/pubmed/33004951 http://dx.doi.org/10.1038/s41598-020-73342-3 |
Ejemplares similares
-
Removal of high density Gaussian noise in compressed sensing MRI reconstruction through modified total variation image denoising method()
por: Zhu, Yonggui, et al.
Publicado: (2020) -
Optimal Weights Mixed Filter for removing mixture of Gaussian and impulse noises
por: Jin, Qiyu, et al.
Publicado: (2017) -
Fusion of External and Internal Prior Information for the Removal of Gaussian Noise in Images
por: Awad, Ali S.
Publicado: (2020) -
An efficient method to remove mixed Gaussian and random-valued impulse noise
por: Xing, Mengdi, et al.
Publicado: (2022) -
A Second-Order Method for Removing Mixed Noise from Remote Sensing Images
por: Zhou, Ying, et al.
Publicado: (2023)