Cargando…

Linalool inhibits 22Rv1 prostate cancer cell proliferation and induces apoptosis

Linalool is an unsaturated terpene that can be found in several plants and exhibits various biological activities. The aim of the present study was to investigate the anticancer activity of linalool using the human prostate cancer 22Rv1 cell line. Flow cytometry was employed to study the effects of...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, Yunqi, Cheng, Xianliang, Wang, Guohui, Liao, Yuan, Qing, Chen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7530887/
https://www.ncbi.nlm.nih.gov/pubmed/33029205
http://dx.doi.org/10.3892/ol.2020.12152
Descripción
Sumario:Linalool is an unsaturated terpene that can be found in several plants and exhibits various biological activities. The aim of the present study was to investigate the anticancer activity of linalool using the human prostate cancer 22Rv1 cell line. Flow cytometry was employed to study the effects of linalool on the induction of apoptosis, cell cycle progression, loss of mitochondrial membrane potential and cytochrome c release, whereas the effects of linalool on apoptosis-associated proteins were investigated by western blot analysis. An efficacy study was conducted using 22Rv1 tumor-bearing mice. The expression of the cell proliferation markers Ki-67 and proliferating cell nuclear antigen (PCNA) in xenograft tumors was evaluated by immunohistochemistry. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay was used to study the induction of apoptosis in an in vivo model. Linalool exerted an inhibitory effect on 22Rv1 cell proliferation and induced apoptosis in both in vitro and in vivo models. Western blot analysis indicated that both the mitochondria-mediated intrinsic and death-receptor-mediated extrinsic pathways were involved in the induction of apoptosis. Furthermore, linalool significantly reduced the expression of Ki-67 and PCNA in the 22Rv1 ×enograft model. The findings of the present study provide evidence supporting the anti-proliferative effects of linalool on 22Rv1 human prostate cancer cells, and suggest that linalool may be an effective agent for prostate cancer treatment.