Cargando…

Genetic suppression of defective profilin by attenuated Myosin II reveals a potential role for Myosin II in actin dynamics in vivo in fission yeast

The actin cytoskeleton plays a variety of roles in eukaryotic cell physiology, ranging from cell polarity and migration to cytokinesis. Key to the function of the actin cytoskeleton is the mechanisms that control its assembly, stability, and turnover. Through genetic analyses in Schizosaccharomyces...

Descripción completa

Detalles Bibliográficos
Autores principales: Zambon, Paola, Palani, Saravanan, Jadhav, Shekhar Sanjay, Gayathri, Pananghat, Balasubramanian, Mohan K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The American Society for Cell Biology 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7530902/
https://www.ncbi.nlm.nih.gov/pubmed/32614646
http://dx.doi.org/10.1091/mbc.E20-04-0224
Descripción
Sumario:The actin cytoskeleton plays a variety of roles in eukaryotic cell physiology, ranging from cell polarity and migration to cytokinesis. Key to the function of the actin cytoskeleton is the mechanisms that control its assembly, stability, and turnover. Through genetic analyses in Schizosaccharomyces pombe, we found that myo2-S1 (myo2-G515D), a Myosin II mutant allele, was capable of rescuing lethality caused by partial defects in actin nucleation/stability caused, for example, through compromised function of the actin-binding protein Cdc3-profilin. The mutation in myo2-S1 affects the activation loop of Myosin II, which is involved in physical interaction with subdomain 1 of actin and in stimulating the ATPase activity of Myosin. Consistently, actomyosin rings in myo2-S1 cell ghosts were unstable and severely compromised in contraction on ATP addition. These studies strongly suggest a role for Myo2 in actin cytoskeletal disassembly and turnover in vivo, and that compromise of this activity leads to genetic suppression of mutants defective in actin filament assembly/stability at the division site.