Cargando…
Introducing the Hybrid “K-means, RLS” Learning for the RBF Network in Obstructive Apnea Disease Detection using Dual-tree Complex Wavelet Transform Based Features
Apnea is one of the deadliest diseases that can be prevented and cured if it is detected in time. In this paper, we propose a precise method for early detection of the obstructive sleep apnea (OSA) disease using the latest feature selection and extraction methods. The feature selection in this paper...
Autores principales: | Ostadieh, Javad, Amirani, Mehdi Chehel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Sciendo
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7531097/ https://www.ncbi.nlm.nih.gov/pubmed/33584897 http://dx.doi.org/10.2478/joeb-2020-0002 |
Ejemplares similares
-
Enhancing Obstructive Apnea Disease Detection Using Dual-Tree Complex Wavelet Transform-Based Features and the Hybrid “K-Means, Recursive Least-Squares” Learning for the Radial Basis Function Network
por: Ostadieh, Javad, et al.
Publicado: (2020) -
Nonlinear Feature Extraction Methods Based on Dual-Tree Complex Wavelet Transform Subimages of Brain Magnetic Resonance Imaging for the Classification of Multiple Diseases
por: Bazdar, Amir, et al.
Publicado: (2023) -
An Efficient and Automatic ECG Arrhythmia Diagnosis System using DWT and HOS Features and Entropy- Based Feature Selection Procedure
por: Chashmi, Abdullah Jafari, et al.
Publicado: (2019) -
Dual tree complex wavelet transform based denoising of optical microscopy images
por: Bal, Ufuk
Publicado: (2012) -
Classification of lung pathologies in neonates using dual-tree complex wavelet transform
por: Aujla, Sagarjit, et al.
Publicado: (2023)