Cargando…
Enhancing Sharp Features by Locally Relaxing Regularization for Reconstructed Images in Electrical Impedance Tomography
Image reconstruction in EIT is an inverse problem, which is ill posed and hence needs regularization. Regularization brings stability to reconstructed EIT image with respect to noise in the measured data. But this is at the cost of smoothening of sharp edges and high curvature details of shapes in t...
Autores principales: | Ranade, Nanda V., Gharpure, Damayanti C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Sciendo
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7531207/ https://www.ncbi.nlm.nih.gov/pubmed/33584877 http://dx.doi.org/10.2478/joeb-2019-0002 |
Ejemplares similares
-
Regularization Solver Guided FISTA for Electrical Impedance Tomography
por: Wang, Qian, et al.
Publicado: (2023) -
Sparse Regularization-Based Approach for Point Cloud Denoising and Sharp Features Enhancement
por: Leal, Esmeide, et al.
Publicado: (2020) -
Advances of deep learning in electrical impedance tomography image reconstruction
por: Zhang, Tao, et al.
Publicado: (2022) -
Comparing D-bar and common regularization-based methods for electrical impedance tomography
por: Hamilton, S J, et al.
Publicado: (2019) -
Image Reconstruction Using Supervised Learning in Wearable Electrical Impedance Tomography of the Thorax
por: Ivanenko, Mikhail, et al.
Publicado: (2023)