Cargando…

Seven-Gene Signature Based on Glycolysis Is Closely Related to the Prognosis and Tumor Immune Infiltration of Patients With Gastric Cancer

Background: Gastric cancer (GC) is one of the most common malignancies worldwide, exhibiting a high morbidity, and mortality. As the various treatment methods for gastric cancer are limited by disadvantages, many efforts to improve the efficacy of these treatments are being taken. Metabolic recombin...

Descripción completa

Detalles Bibliográficos
Autores principales: Yu, Shanshan, Hu, Chuan, Cai, Luya, Du, Xuedan, Lin, Fan, Yu, Qiongjie, Liu, Lixiao, Zhang, Cheng, Liu, Xuan, Li, Wenfeng, Zhan, Yu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7531434/
https://www.ncbi.nlm.nih.gov/pubmed/33072557
http://dx.doi.org/10.3389/fonc.2020.01778
_version_ 1783589766277627904
author Yu, Shanshan
Hu, Chuan
Cai, Luya
Du, Xuedan
Lin, Fan
Yu, Qiongjie
Liu, Lixiao
Zhang, Cheng
Liu, Xuan
Li, Wenfeng
Zhan, Yu
author_facet Yu, Shanshan
Hu, Chuan
Cai, Luya
Du, Xuedan
Lin, Fan
Yu, Qiongjie
Liu, Lixiao
Zhang, Cheng
Liu, Xuan
Li, Wenfeng
Zhan, Yu
author_sort Yu, Shanshan
collection PubMed
description Background: Gastric cancer (GC) is one of the most common malignancies worldwide, exhibiting a high morbidity, and mortality. As the various treatment methods for gastric cancer are limited by disadvantages, many efforts to improve the efficacy of these treatments are being taken. Metabolic recombination is an important characteristic of cancer and has gradually caused a recent upsurge in research. However, systematic analysis of the interaction between glycolysis and GC patient prognosis and its potential associations with immune infiltration is lacking but urgently needed. Methods: We obtained the gene expression data and clinical materials of GC derived from The Cancer Genome Atlas (TCGA) dataset. Univariate and multivariate Cox proportional regression analyses were performed to select the optimal prognosis-related genes for subsequent modeling. We then validated our data in the GEO database and further verified the gene expression using the Oncomine database and PCR experiments. Besides, Gene set variation analysis (GSVA) analysis was employed to further explore the differences in activation status of biological pathways between the high and low risk groups. Furthermore, a nomogram was adopted to predict the individualized survival rate of GC patients. Finally, a violin plot and a TIMMER analysis were performed to analyse the characteristics of immune infiltration in the microenvironment. Results: A seven-gene signature, including STC1, CLDN9, EFNA3, ZBTB7A, NT5E, NUP50, and CXCR4, was established. Based on this seven-gene signature, the patients in the training set and testing sets could be divided into high-risk and low-risk groups. In addition, a nomogram based on risk and age showed good calibration and moderate discrimination. The results proved that the seven-gene signature had a strong capacity to predict the GC patient prognosis. Collectively, the violin plot and TIMMER analysis demonstrated that an immunosuppressive tumor microenvironment caused by hyperglycolysis led to poor prognosis. Conclusion: Taken together, these results established a genetic signature for gastric cancer based on glycolysis, which has reference significance for the in-depth study of the metabolic mechanism of gastric cancer and the exploration of new clinical treatment strategies.
format Online
Article
Text
id pubmed-7531434
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-75314342020-10-17 Seven-Gene Signature Based on Glycolysis Is Closely Related to the Prognosis and Tumor Immune Infiltration of Patients With Gastric Cancer Yu, Shanshan Hu, Chuan Cai, Luya Du, Xuedan Lin, Fan Yu, Qiongjie Liu, Lixiao Zhang, Cheng Liu, Xuan Li, Wenfeng Zhan, Yu Front Oncol Oncology Background: Gastric cancer (GC) is one of the most common malignancies worldwide, exhibiting a high morbidity, and mortality. As the various treatment methods for gastric cancer are limited by disadvantages, many efforts to improve the efficacy of these treatments are being taken. Metabolic recombination is an important characteristic of cancer and has gradually caused a recent upsurge in research. However, systematic analysis of the interaction between glycolysis and GC patient prognosis and its potential associations with immune infiltration is lacking but urgently needed. Methods: We obtained the gene expression data and clinical materials of GC derived from The Cancer Genome Atlas (TCGA) dataset. Univariate and multivariate Cox proportional regression analyses were performed to select the optimal prognosis-related genes for subsequent modeling. We then validated our data in the GEO database and further verified the gene expression using the Oncomine database and PCR experiments. Besides, Gene set variation analysis (GSVA) analysis was employed to further explore the differences in activation status of biological pathways between the high and low risk groups. Furthermore, a nomogram was adopted to predict the individualized survival rate of GC patients. Finally, a violin plot and a TIMMER analysis were performed to analyse the characteristics of immune infiltration in the microenvironment. Results: A seven-gene signature, including STC1, CLDN9, EFNA3, ZBTB7A, NT5E, NUP50, and CXCR4, was established. Based on this seven-gene signature, the patients in the training set and testing sets could be divided into high-risk and low-risk groups. In addition, a nomogram based on risk and age showed good calibration and moderate discrimination. The results proved that the seven-gene signature had a strong capacity to predict the GC patient prognosis. Collectively, the violin plot and TIMMER analysis demonstrated that an immunosuppressive tumor microenvironment caused by hyperglycolysis led to poor prognosis. Conclusion: Taken together, these results established a genetic signature for gastric cancer based on glycolysis, which has reference significance for the in-depth study of the metabolic mechanism of gastric cancer and the exploration of new clinical treatment strategies. Frontiers Media S.A. 2020-09-18 /pmc/articles/PMC7531434/ /pubmed/33072557 http://dx.doi.org/10.3389/fonc.2020.01778 Text en Copyright © 2020 Yu, Hu, Cai, Du, Lin, Yu, Liu, Zhang, Liu, Li and Zhan. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Oncology
Yu, Shanshan
Hu, Chuan
Cai, Luya
Du, Xuedan
Lin, Fan
Yu, Qiongjie
Liu, Lixiao
Zhang, Cheng
Liu, Xuan
Li, Wenfeng
Zhan, Yu
Seven-Gene Signature Based on Glycolysis Is Closely Related to the Prognosis and Tumor Immune Infiltration of Patients With Gastric Cancer
title Seven-Gene Signature Based on Glycolysis Is Closely Related to the Prognosis and Tumor Immune Infiltration of Patients With Gastric Cancer
title_full Seven-Gene Signature Based on Glycolysis Is Closely Related to the Prognosis and Tumor Immune Infiltration of Patients With Gastric Cancer
title_fullStr Seven-Gene Signature Based on Glycolysis Is Closely Related to the Prognosis and Tumor Immune Infiltration of Patients With Gastric Cancer
title_full_unstemmed Seven-Gene Signature Based on Glycolysis Is Closely Related to the Prognosis and Tumor Immune Infiltration of Patients With Gastric Cancer
title_short Seven-Gene Signature Based on Glycolysis Is Closely Related to the Prognosis and Tumor Immune Infiltration of Patients With Gastric Cancer
title_sort seven-gene signature based on glycolysis is closely related to the prognosis and tumor immune infiltration of patients with gastric cancer
topic Oncology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7531434/
https://www.ncbi.nlm.nih.gov/pubmed/33072557
http://dx.doi.org/10.3389/fonc.2020.01778
work_keys_str_mv AT yushanshan sevengenesignaturebasedonglycolysisiscloselyrelatedtotheprognosisandtumorimmuneinfiltrationofpatientswithgastriccancer
AT huchuan sevengenesignaturebasedonglycolysisiscloselyrelatedtotheprognosisandtumorimmuneinfiltrationofpatientswithgastriccancer
AT cailuya sevengenesignaturebasedonglycolysisiscloselyrelatedtotheprognosisandtumorimmuneinfiltrationofpatientswithgastriccancer
AT duxuedan sevengenesignaturebasedonglycolysisiscloselyrelatedtotheprognosisandtumorimmuneinfiltrationofpatientswithgastriccancer
AT linfan sevengenesignaturebasedonglycolysisiscloselyrelatedtotheprognosisandtumorimmuneinfiltrationofpatientswithgastriccancer
AT yuqiongjie sevengenesignaturebasedonglycolysisiscloselyrelatedtotheprognosisandtumorimmuneinfiltrationofpatientswithgastriccancer
AT liulixiao sevengenesignaturebasedonglycolysisiscloselyrelatedtotheprognosisandtumorimmuneinfiltrationofpatientswithgastriccancer
AT zhangcheng sevengenesignaturebasedonglycolysisiscloselyrelatedtotheprognosisandtumorimmuneinfiltrationofpatientswithgastriccancer
AT liuxuan sevengenesignaturebasedonglycolysisiscloselyrelatedtotheprognosisandtumorimmuneinfiltrationofpatientswithgastriccancer
AT liwenfeng sevengenesignaturebasedonglycolysisiscloselyrelatedtotheprognosisandtumorimmuneinfiltrationofpatientswithgastriccancer
AT zhanyu sevengenesignaturebasedonglycolysisiscloselyrelatedtotheprognosisandtumorimmuneinfiltrationofpatientswithgastriccancer