Cargando…

Parvalbumin and Somatostatin Interneurons Contribute to the Generation of Hippocampal Gamma Oscillations

γ-frequency oscillations (30-120 Hz) in cortical networks influence neuronal encoding and information transfer, and are disrupted in multiple brain disorders. While synaptic inhibition is important for synchronization across the γ-frequency range, the role of distinct interneuronal subtypes in slow...

Descripción completa

Detalles Bibliográficos
Autores principales: Antonoudiou, Pantelis, Tan, Yu Lin, Kontou, Georgina, Upton, A. Louise, Mann, Edward O.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Society for Neuroscience 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7531548/
https://www.ncbi.nlm.nih.gov/pubmed/32859716
http://dx.doi.org/10.1523/JNEUROSCI.0261-20.2020
_version_ 1783589779876610048
author Antonoudiou, Pantelis
Tan, Yu Lin
Kontou, Georgina
Upton, A. Louise
Mann, Edward O.
author_facet Antonoudiou, Pantelis
Tan, Yu Lin
Kontou, Georgina
Upton, A. Louise
Mann, Edward O.
author_sort Antonoudiou, Pantelis
collection PubMed
description γ-frequency oscillations (30-120 Hz) in cortical networks influence neuronal encoding and information transfer, and are disrupted in multiple brain disorders. While synaptic inhibition is important for synchronization across the γ-frequency range, the role of distinct interneuronal subtypes in slow (<60 Hz) and fast γ states remains unclear. Here, we used optogenetics to examine the involvement of parvalbumin-expressing (PV(+)) and somatostatin-expressing (SST(+)) interneurons in γ oscillations in the mouse hippocampal CA3 ex vivo, using animals of either sex. Disrupting either PV(+) or SST(+) interneuron activity, via either photoinhibition or photoexcitation, led to a decrease in the power of cholinergically induced slow γ oscillations. Furthermore, photoexcitation of SST(+) interneurons induced fast γ oscillations, which depended on both synaptic excitation and inhibition. Our findings support a critical role for both PV(+) and SST(+) interneurons in slow hippocampal γ oscillations, and further suggest that intense activation of SST(+) interneurons can enable the CA3 circuit to generate fast γ oscillations. SIGNIFICANCE STATEMENT The generation of hippocampal γ oscillations depends on synchronized inhibition provided by GABAergic interneurons. Parvalbumin-expressing (PV(+)) interneurons are thought to play the key role in coordinating the spike timing of excitatory pyramidal neurons, but the role distinct inhibitory circuits in network synchronization remains unresolved. Here, we show, for the first time, that causal disruption of either PV(+) or somatostatin-expressing (SST(+)) interneuron activity impairs the generation of slow γ oscillations in the ventral hippocampus ex vivo. We further show that SST(+) interneuron activation along with general network excitation is sufficient to generate high-frequency γ oscillations in the same preparation. These results affirm a crucial role for both PV(+) and SST(+) interneurons in hippocampal γ oscillation generation.
format Online
Article
Text
id pubmed-7531548
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Society for Neuroscience
record_format MEDLINE/PubMed
spelling pubmed-75315482020-10-05 Parvalbumin and Somatostatin Interneurons Contribute to the Generation of Hippocampal Gamma Oscillations Antonoudiou, Pantelis Tan, Yu Lin Kontou, Georgina Upton, A. Louise Mann, Edward O. J Neurosci Research Articles γ-frequency oscillations (30-120 Hz) in cortical networks influence neuronal encoding and information transfer, and are disrupted in multiple brain disorders. While synaptic inhibition is important for synchronization across the γ-frequency range, the role of distinct interneuronal subtypes in slow (<60 Hz) and fast γ states remains unclear. Here, we used optogenetics to examine the involvement of parvalbumin-expressing (PV(+)) and somatostatin-expressing (SST(+)) interneurons in γ oscillations in the mouse hippocampal CA3 ex vivo, using animals of either sex. Disrupting either PV(+) or SST(+) interneuron activity, via either photoinhibition or photoexcitation, led to a decrease in the power of cholinergically induced slow γ oscillations. Furthermore, photoexcitation of SST(+) interneurons induced fast γ oscillations, which depended on both synaptic excitation and inhibition. Our findings support a critical role for both PV(+) and SST(+) interneurons in slow hippocampal γ oscillations, and further suggest that intense activation of SST(+) interneurons can enable the CA3 circuit to generate fast γ oscillations. SIGNIFICANCE STATEMENT The generation of hippocampal γ oscillations depends on synchronized inhibition provided by GABAergic interneurons. Parvalbumin-expressing (PV(+)) interneurons are thought to play the key role in coordinating the spike timing of excitatory pyramidal neurons, but the role distinct inhibitory circuits in network synchronization remains unresolved. Here, we show, for the first time, that causal disruption of either PV(+) or somatostatin-expressing (SST(+)) interneuron activity impairs the generation of slow γ oscillations in the ventral hippocampus ex vivo. We further show that SST(+) interneuron activation along with general network excitation is sufficient to generate high-frequency γ oscillations in the same preparation. These results affirm a crucial role for both PV(+) and SST(+) interneurons in hippocampal γ oscillation generation. Society for Neuroscience 2020-09-30 /pmc/articles/PMC7531548/ /pubmed/32859716 http://dx.doi.org/10.1523/JNEUROSCI.0261-20.2020 Text en Copyright © 2020 Antonoudiou et al. https://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License Creative Commons Attribution 4.0 International (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed.
spellingShingle Research Articles
Antonoudiou, Pantelis
Tan, Yu Lin
Kontou, Georgina
Upton, A. Louise
Mann, Edward O.
Parvalbumin and Somatostatin Interneurons Contribute to the Generation of Hippocampal Gamma Oscillations
title Parvalbumin and Somatostatin Interneurons Contribute to the Generation of Hippocampal Gamma Oscillations
title_full Parvalbumin and Somatostatin Interneurons Contribute to the Generation of Hippocampal Gamma Oscillations
title_fullStr Parvalbumin and Somatostatin Interneurons Contribute to the Generation of Hippocampal Gamma Oscillations
title_full_unstemmed Parvalbumin and Somatostatin Interneurons Contribute to the Generation of Hippocampal Gamma Oscillations
title_short Parvalbumin and Somatostatin Interneurons Contribute to the Generation of Hippocampal Gamma Oscillations
title_sort parvalbumin and somatostatin interneurons contribute to the generation of hippocampal gamma oscillations
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7531548/
https://www.ncbi.nlm.nih.gov/pubmed/32859716
http://dx.doi.org/10.1523/JNEUROSCI.0261-20.2020
work_keys_str_mv AT antonoudioupantelis parvalbuminandsomatostatininterneuronscontributetothegenerationofhippocampalgammaoscillations
AT tanyulin parvalbuminandsomatostatininterneuronscontributetothegenerationofhippocampalgammaoscillations
AT kontougeorgina parvalbuminandsomatostatininterneuronscontributetothegenerationofhippocampalgammaoscillations
AT uptonalouise parvalbuminandsomatostatininterneuronscontributetothegenerationofhippocampalgammaoscillations
AT mannedwardo parvalbuminandsomatostatininterneuronscontributetothegenerationofhippocampalgammaoscillations