Cargando…
Iodine Redistribution During Trauma, Sepsis, and Hibernation: An Evolutionarily Conserved Response to Severe Stress
OBJECTIVE: We performed these studies to learn how iodine in the form of free iodide behaves during stress. DESIGN: Prospective observational trial using samples obtained from human trauma patients and retrospective observational study using remnant samples from human sepsis patients and arctic grou...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Lippincott Williams & Wilkins
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7531756/ https://www.ncbi.nlm.nih.gov/pubmed/33063025 http://dx.doi.org/10.1097/CCE.0000000000000215 |
Sumario: | OBJECTIVE: We performed these studies to learn how iodine in the form of free iodide behaves during stress. DESIGN: Prospective observational trial using samples obtained from human trauma patients and retrospective observational study using remnant samples from human sepsis patients and arctic ground squirrels. Preclinical interventional study using hind-limb ischemia and reperfusion injury in mice. SETTING: Level I trauma center emergency room and ICU and animal research laboratories. SUBJECTS: Adult human sepsis and trauma patients, wild-caught adult arctic ground squirrels, and sexually mature laboratory mice. INTERVENTIONS: Ischemia and reperfusion injury was induced in mice by temporary application of tourniquet to one hind-limb. Iodide was administered IV just prior to reperfusion. MEASUREMENTS AND MAIN RESULTS: Free iodide was measured using ion chromatography. Relative to iodide in plasma from normal donors, iodide was increased 17-fold in plasma from trauma patients and 26-fold in plasma from sepsis patients. In arctic ground squirrels, iodide increases over three-fold during hibernation. And during ischemia/reperfusion injury in mice, iodide accumulates in ischemic tissue and reduces both local and systemic tissue damage. CONCLUSIONS: Iodide redistributes during stress and improves outcome after injury. Essential functions of iodide may have contributed to its evolutionary selection and be useful as a therapeutic intervention for human patients. |
---|