Cargando…

A general approach to detecting migration events in digital trace data

Empirical research on migration has historically been fraught with measurement challenges. Recently, the increasing ubiquity of digital trace data—from mobile phones, social media, and related sources of ‘big data’—has created new opportunities for the quantitative analysis of migration. However, mo...

Descripción completa

Detalles Bibliográficos
Autores principales: Chi, Guanghua, Lin, Fengyang, Chi, Guangqing, Blumenstock, Joshua
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7531812/
https://www.ncbi.nlm.nih.gov/pubmed/33007015
http://dx.doi.org/10.1371/journal.pone.0239408
Descripción
Sumario:Empirical research on migration has historically been fraught with measurement challenges. Recently, the increasing ubiquity of digital trace data—from mobile phones, social media, and related sources of ‘big data’—has created new opportunities for the quantitative analysis of migration. However, most existing work relies on relatively ad hoc methods for inferring migration. Here, we develop and validate a novel and general approach to detecting migration events in trace data. We benchmark this method using two different trace datasets: four years of mobile phone metadata from a single country’s monopoly operator, and three years of geo-tagged Twitter data. The novel measures more accurately reflect human understanding and evaluation of migration events, and further provide more granular insight into migration spells and types than what are captured in standard survey instruments.