Cargando…
Semantic segmentation of HeLa cells: An objective comparison between one traditional algorithm and four deep-learning architectures
The quantitative study of cell morphology is of great importance as the structure and condition of cells and their structures can be related to conditions of health or disease. The first step towards that, is the accurate segmentation of cell structures. In this work, we compare five approaches, one...
Autores principales: | Karabağ, Cefa, Jones, Martin L., Peddie, Christopher J., Weston, Anne E., Collinson, Lucy M., Reyes-Aldasoro, Constantino Carlos |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7531863/ https://www.ncbi.nlm.nih.gov/pubmed/33006963 http://dx.doi.org/10.1371/journal.pone.0230605 |
Ejemplares similares
-
Volumetric Semantic Instance Segmentation of the Plasma Membrane of HeLa Cells
por: Karabağ, Cefa, et al.
Publicado: (2021) -
Segmentation and Modelling of the Nuclear Envelope of HeLa Cells Imaged with Serial Block Face Scanning Electron Microscopy †
por: Karabağ, Cefa, et al.
Publicado: (2019) -
Impact of Training Data, Ground Truth and Shape Variability in the Deep Learning-Based Semantic Segmentation of HeLa Cells Observed with Electron Microscopy
por: Karabağ, Cefa, et al.
Publicado: (2023) -
Classification and Visualisation of Normal and Abnormal Radiographs; A Comparison between Eleven Convolutional Neural Network Architectures
por: Ananda, Ananda, et al.
Publicado: (2021) -
Morphological Estimation of Cellularity on Neo-Adjuvant Treated Breast Cancer Histological Images
por: Ortega-Ruiz, Mauricio Alberto, et al.
Publicado: (2020)