Cargando…

In situ observation of nanolite growth in volcanic melt: A driving force for explosive eruptions

Although gas exsolution is a major driving force behind explosive volcanic eruptions, viscosity is critical in controlling the escape of bubbles and switching between explosive and effusive behavior. Temperature and composition control melt viscosity, but crystallization above a critical volume (>...

Descripción completa

Detalles Bibliográficos
Autores principales: Di Genova, Danilo, Brooker, Richard A., Mader, Heidy M., Drewitt, James W. E., Longo, Alessandro, Deubener, Joachim, Neuville, Daniel R., Fanara, Sara, Shebanova, Olga, Anzellini, Simone, Arzilli, Fabio, Bamber, Emily C., Hennet, Louis, La Spina, Giuseppe, Miyajima, Nobuyoshi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7531885/
https://www.ncbi.nlm.nih.gov/pubmed/32967825
http://dx.doi.org/10.1126/sciadv.abb0413
_version_ 1783589818645610496
author Di Genova, Danilo
Brooker, Richard A.
Mader, Heidy M.
Drewitt, James W. E.
Longo, Alessandro
Deubener, Joachim
Neuville, Daniel R.
Fanara, Sara
Shebanova, Olga
Anzellini, Simone
Arzilli, Fabio
Bamber, Emily C.
Hennet, Louis
La Spina, Giuseppe
Miyajima, Nobuyoshi
author_facet Di Genova, Danilo
Brooker, Richard A.
Mader, Heidy M.
Drewitt, James W. E.
Longo, Alessandro
Deubener, Joachim
Neuville, Daniel R.
Fanara, Sara
Shebanova, Olga
Anzellini, Simone
Arzilli, Fabio
Bamber, Emily C.
Hennet, Louis
La Spina, Giuseppe
Miyajima, Nobuyoshi
author_sort Di Genova, Danilo
collection PubMed
description Although gas exsolution is a major driving force behind explosive volcanic eruptions, viscosity is critical in controlling the escape of bubbles and switching between explosive and effusive behavior. Temperature and composition control melt viscosity, but crystallization above a critical volume (>30 volume %) can lock up the magma, triggering an explosion. Here, we present an alternative to this well-established paradigm by showing how an unexpectedly small volume of nano-sized crystals can cause a disproportionate increase in magma viscosity. Our in situ observations on a basaltic melt, rheological measurements in an analog system, and modeling demonstrate how just a few volume % of nanolites results in a marked increase in viscosity above the critical value needed for explosive fragmentation, even for a low-viscosity melt. Images of nanolites from low-viscosity explosive eruptions and an experimentally produced basaltic pumice show syn-eruptive growth, possibly nucleating a high bubble number density.
format Online
Article
Text
id pubmed-7531885
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher American Association for the Advancement of Science
record_format MEDLINE/PubMed
spelling pubmed-75318852020-10-13 In situ observation of nanolite growth in volcanic melt: A driving force for explosive eruptions Di Genova, Danilo Brooker, Richard A. Mader, Heidy M. Drewitt, James W. E. Longo, Alessandro Deubener, Joachim Neuville, Daniel R. Fanara, Sara Shebanova, Olga Anzellini, Simone Arzilli, Fabio Bamber, Emily C. Hennet, Louis La Spina, Giuseppe Miyajima, Nobuyoshi Sci Adv Research Articles Although gas exsolution is a major driving force behind explosive volcanic eruptions, viscosity is critical in controlling the escape of bubbles and switching between explosive and effusive behavior. Temperature and composition control melt viscosity, but crystallization above a critical volume (>30 volume %) can lock up the magma, triggering an explosion. Here, we present an alternative to this well-established paradigm by showing how an unexpectedly small volume of nano-sized crystals can cause a disproportionate increase in magma viscosity. Our in situ observations on a basaltic melt, rheological measurements in an analog system, and modeling demonstrate how just a few volume % of nanolites results in a marked increase in viscosity above the critical value needed for explosive fragmentation, even for a low-viscosity melt. Images of nanolites from low-viscosity explosive eruptions and an experimentally produced basaltic pumice show syn-eruptive growth, possibly nucleating a high bubble number density. American Association for the Advancement of Science 2020-09-23 /pmc/articles/PMC7531885/ /pubmed/32967825 http://dx.doi.org/10.1126/sciadv.abb0413 Text en Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY). https://creativecommons.org/licenses/by/4.0/ https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution license (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Articles
Di Genova, Danilo
Brooker, Richard A.
Mader, Heidy M.
Drewitt, James W. E.
Longo, Alessandro
Deubener, Joachim
Neuville, Daniel R.
Fanara, Sara
Shebanova, Olga
Anzellini, Simone
Arzilli, Fabio
Bamber, Emily C.
Hennet, Louis
La Spina, Giuseppe
Miyajima, Nobuyoshi
In situ observation of nanolite growth in volcanic melt: A driving force for explosive eruptions
title In situ observation of nanolite growth in volcanic melt: A driving force for explosive eruptions
title_full In situ observation of nanolite growth in volcanic melt: A driving force for explosive eruptions
title_fullStr In situ observation of nanolite growth in volcanic melt: A driving force for explosive eruptions
title_full_unstemmed In situ observation of nanolite growth in volcanic melt: A driving force for explosive eruptions
title_short In situ observation of nanolite growth in volcanic melt: A driving force for explosive eruptions
title_sort in situ observation of nanolite growth in volcanic melt: a driving force for explosive eruptions
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7531885/
https://www.ncbi.nlm.nih.gov/pubmed/32967825
http://dx.doi.org/10.1126/sciadv.abb0413
work_keys_str_mv AT digenovadanilo insituobservationofnanolitegrowthinvolcanicmeltadrivingforceforexplosiveeruptions
AT brookerricharda insituobservationofnanolitegrowthinvolcanicmeltadrivingforceforexplosiveeruptions
AT maderheidym insituobservationofnanolitegrowthinvolcanicmeltadrivingforceforexplosiveeruptions
AT drewittjameswe insituobservationofnanolitegrowthinvolcanicmeltadrivingforceforexplosiveeruptions
AT longoalessandro insituobservationofnanolitegrowthinvolcanicmeltadrivingforceforexplosiveeruptions
AT deubenerjoachim insituobservationofnanolitegrowthinvolcanicmeltadrivingforceforexplosiveeruptions
AT neuvilledanielr insituobservationofnanolitegrowthinvolcanicmeltadrivingforceforexplosiveeruptions
AT fanarasara insituobservationofnanolitegrowthinvolcanicmeltadrivingforceforexplosiveeruptions
AT shebanovaolga insituobservationofnanolitegrowthinvolcanicmeltadrivingforceforexplosiveeruptions
AT anzellinisimone insituobservationofnanolitegrowthinvolcanicmeltadrivingforceforexplosiveeruptions
AT arzillifabio insituobservationofnanolitegrowthinvolcanicmeltadrivingforceforexplosiveeruptions
AT bamberemilyc insituobservationofnanolitegrowthinvolcanicmeltadrivingforceforexplosiveeruptions
AT hennetlouis insituobservationofnanolitegrowthinvolcanicmeltadrivingforceforexplosiveeruptions
AT laspinagiuseppe insituobservationofnanolitegrowthinvolcanicmeltadrivingforceforexplosiveeruptions
AT miyajimanobuyoshi insituobservationofnanolitegrowthinvolcanicmeltadrivingforceforexplosiveeruptions