Cargando…
In situ observation of nanolite growth in volcanic melt: A driving force for explosive eruptions
Although gas exsolution is a major driving force behind explosive volcanic eruptions, viscosity is critical in controlling the escape of bubbles and switching between explosive and effusive behavior. Temperature and composition control melt viscosity, but crystallization above a critical volume (>...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7531885/ https://www.ncbi.nlm.nih.gov/pubmed/32967825 http://dx.doi.org/10.1126/sciadv.abb0413 |
_version_ | 1783589818645610496 |
---|---|
author | Di Genova, Danilo Brooker, Richard A. Mader, Heidy M. Drewitt, James W. E. Longo, Alessandro Deubener, Joachim Neuville, Daniel R. Fanara, Sara Shebanova, Olga Anzellini, Simone Arzilli, Fabio Bamber, Emily C. Hennet, Louis La Spina, Giuseppe Miyajima, Nobuyoshi |
author_facet | Di Genova, Danilo Brooker, Richard A. Mader, Heidy M. Drewitt, James W. E. Longo, Alessandro Deubener, Joachim Neuville, Daniel R. Fanara, Sara Shebanova, Olga Anzellini, Simone Arzilli, Fabio Bamber, Emily C. Hennet, Louis La Spina, Giuseppe Miyajima, Nobuyoshi |
author_sort | Di Genova, Danilo |
collection | PubMed |
description | Although gas exsolution is a major driving force behind explosive volcanic eruptions, viscosity is critical in controlling the escape of bubbles and switching between explosive and effusive behavior. Temperature and composition control melt viscosity, but crystallization above a critical volume (>30 volume %) can lock up the magma, triggering an explosion. Here, we present an alternative to this well-established paradigm by showing how an unexpectedly small volume of nano-sized crystals can cause a disproportionate increase in magma viscosity. Our in situ observations on a basaltic melt, rheological measurements in an analog system, and modeling demonstrate how just a few volume % of nanolites results in a marked increase in viscosity above the critical value needed for explosive fragmentation, even for a low-viscosity melt. Images of nanolites from low-viscosity explosive eruptions and an experimentally produced basaltic pumice show syn-eruptive growth, possibly nucleating a high bubble number density. |
format | Online Article Text |
id | pubmed-7531885 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | American Association for the Advancement of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-75318852020-10-13 In situ observation of nanolite growth in volcanic melt: A driving force for explosive eruptions Di Genova, Danilo Brooker, Richard A. Mader, Heidy M. Drewitt, James W. E. Longo, Alessandro Deubener, Joachim Neuville, Daniel R. Fanara, Sara Shebanova, Olga Anzellini, Simone Arzilli, Fabio Bamber, Emily C. Hennet, Louis La Spina, Giuseppe Miyajima, Nobuyoshi Sci Adv Research Articles Although gas exsolution is a major driving force behind explosive volcanic eruptions, viscosity is critical in controlling the escape of bubbles and switching between explosive and effusive behavior. Temperature and composition control melt viscosity, but crystallization above a critical volume (>30 volume %) can lock up the magma, triggering an explosion. Here, we present an alternative to this well-established paradigm by showing how an unexpectedly small volume of nano-sized crystals can cause a disproportionate increase in magma viscosity. Our in situ observations on a basaltic melt, rheological measurements in an analog system, and modeling demonstrate how just a few volume % of nanolites results in a marked increase in viscosity above the critical value needed for explosive fragmentation, even for a low-viscosity melt. Images of nanolites from low-viscosity explosive eruptions and an experimentally produced basaltic pumice show syn-eruptive growth, possibly nucleating a high bubble number density. American Association for the Advancement of Science 2020-09-23 /pmc/articles/PMC7531885/ /pubmed/32967825 http://dx.doi.org/10.1126/sciadv.abb0413 Text en Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY). https://creativecommons.org/licenses/by/4.0/ https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution license (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Articles Di Genova, Danilo Brooker, Richard A. Mader, Heidy M. Drewitt, James W. E. Longo, Alessandro Deubener, Joachim Neuville, Daniel R. Fanara, Sara Shebanova, Olga Anzellini, Simone Arzilli, Fabio Bamber, Emily C. Hennet, Louis La Spina, Giuseppe Miyajima, Nobuyoshi In situ observation of nanolite growth in volcanic melt: A driving force for explosive eruptions |
title | In situ observation of nanolite growth in volcanic melt: A driving force for explosive eruptions |
title_full | In situ observation of nanolite growth in volcanic melt: A driving force for explosive eruptions |
title_fullStr | In situ observation of nanolite growth in volcanic melt: A driving force for explosive eruptions |
title_full_unstemmed | In situ observation of nanolite growth in volcanic melt: A driving force for explosive eruptions |
title_short | In situ observation of nanolite growth in volcanic melt: A driving force for explosive eruptions |
title_sort | in situ observation of nanolite growth in volcanic melt: a driving force for explosive eruptions |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7531885/ https://www.ncbi.nlm.nih.gov/pubmed/32967825 http://dx.doi.org/10.1126/sciadv.abb0413 |
work_keys_str_mv | AT digenovadanilo insituobservationofnanolitegrowthinvolcanicmeltadrivingforceforexplosiveeruptions AT brookerricharda insituobservationofnanolitegrowthinvolcanicmeltadrivingforceforexplosiveeruptions AT maderheidym insituobservationofnanolitegrowthinvolcanicmeltadrivingforceforexplosiveeruptions AT drewittjameswe insituobservationofnanolitegrowthinvolcanicmeltadrivingforceforexplosiveeruptions AT longoalessandro insituobservationofnanolitegrowthinvolcanicmeltadrivingforceforexplosiveeruptions AT deubenerjoachim insituobservationofnanolitegrowthinvolcanicmeltadrivingforceforexplosiveeruptions AT neuvilledanielr insituobservationofnanolitegrowthinvolcanicmeltadrivingforceforexplosiveeruptions AT fanarasara insituobservationofnanolitegrowthinvolcanicmeltadrivingforceforexplosiveeruptions AT shebanovaolga insituobservationofnanolitegrowthinvolcanicmeltadrivingforceforexplosiveeruptions AT anzellinisimone insituobservationofnanolitegrowthinvolcanicmeltadrivingforceforexplosiveeruptions AT arzillifabio insituobservationofnanolitegrowthinvolcanicmeltadrivingforceforexplosiveeruptions AT bamberemilyc insituobservationofnanolitegrowthinvolcanicmeltadrivingforceforexplosiveeruptions AT hennetlouis insituobservationofnanolitegrowthinvolcanicmeltadrivingforceforexplosiveeruptions AT laspinagiuseppe insituobservationofnanolitegrowthinvolcanicmeltadrivingforceforexplosiveeruptions AT miyajimanobuyoshi insituobservationofnanolitegrowthinvolcanicmeltadrivingforceforexplosiveeruptions |