Cargando…
SPPOLAP: Computing Privacy-Preserving OLAP Data Cubes Effectively and Efficiently Algorithms, Complexity Analysis and Experimental Evaluation
This paper provides significant contributions in the line of the so-called privacy-preserving OLAP research area, via extending the previous SPPOLAP’s results provided recently. SPPOLAP is a state-of-the-art algorithm whose main goal consists in computing privacy-preserving OLAP data cubes effective...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Author(s). Published by Elsevier B.V.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7531923/ https://www.ncbi.nlm.nih.gov/pubmed/33042320 http://dx.doi.org/10.1016/j.procs.2020.09.337 |
Sumario: | This paper provides significant contributions in the line of the so-called privacy-preserving OLAP research area, via extending the previous SPPOLAP’s results provided recently. SPPOLAP is a state-of-the-art algorithm whose main goal consists in computing privacy-preserving OLAP data cubes effectively and efficiently. The main innovations carried-out by SPPOLAP are represented by the novel privacy OLAP notion and the flexible adoption of sampling-based techniques in order to achieve the final privacy-preserving data cube. In line with the main SPPOLAP’s results, this paper significantly extends the previous research efforts by means of the following contributions: (i) complete algorithms of the whole SPPOLAP algorithmic framework; (ii) complexity analysis and results; (iii) comprehensive experimental analysis of SPPOLAP against real-life multidimensional data cubes, according to several experimental parameters. These contributions nice-fully complete the state-of-the-art SPPOLAP’s results. |
---|