Cargando…

SPPOLAP: Computing Privacy-Preserving OLAP Data Cubes Effectively and Efficiently Algorithms, Complexity Analysis and Experimental Evaluation

This paper provides significant contributions in the line of the so-called privacy-preserving OLAP research area, via extending the previous SPPOLAP’s results provided recently. SPPOLAP is a state-of-the-art algorithm whose main goal consists in computing privacy-preserving OLAP data cubes effective...

Descripción completa

Detalles Bibliográficos
Autor principal: Cuzzocrea, Alfredo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Author(s). Published by Elsevier B.V. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7531923/
https://www.ncbi.nlm.nih.gov/pubmed/33042320
http://dx.doi.org/10.1016/j.procs.2020.09.337
Descripción
Sumario:This paper provides significant contributions in the line of the so-called privacy-preserving OLAP research area, via extending the previous SPPOLAP’s results provided recently. SPPOLAP is a state-of-the-art algorithm whose main goal consists in computing privacy-preserving OLAP data cubes effectively and efficiently. The main innovations carried-out by SPPOLAP are represented by the novel privacy OLAP notion and the flexible adoption of sampling-based techniques in order to achieve the final privacy-preserving data cube. In line with the main SPPOLAP’s results, this paper significantly extends the previous research efforts by means of the following contributions: (i) complete algorithms of the whole SPPOLAP algorithmic framework; (ii) complexity analysis and results; (iii) comprehensive experimental analysis of SPPOLAP against real-life multidimensional data cubes, according to several experimental parameters. These contributions nice-fully complete the state-of-the-art SPPOLAP’s results.