Cargando…
DDxNet: a deep learning model for automatic interpretation of electronic health records, electrocardiograms and electroencephalograms
Effective patient care mandates rapid, yet accurate, diagnosis. With the abundance of non-invasive diagnostic measurements and electronic health records (EHR), manual interpretation for differential diagnosis has become time-consuming and challenging. This has led to wide-spread adoption of AI-power...
Autores principales: | Thiagarajan, Jayaraman J., Rajan, Deepta, Katoch, Sameeksha, Spanias, Andreas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7532141/ https://www.ncbi.nlm.nih.gov/pubmed/33009423 http://dx.doi.org/10.1038/s41598-020-73126-9 |
Ejemplares similares
-
Interpretable deep learning for automatic diagnosis of 12-lead electrocardiogram
por: Zhang, Dongdong, et al.
Publicado: (2021) -
Training calibration-based counterfactual explainers for deep learning models in medical image analysis
por: Thiagarajan, Jayaraman J., et al.
Publicado: (2022) -
Analysis of the MPEG-1 Layer III (MP3) Algorithm using MATLAB
por: Thiagarajan, Jayaraman, et al.
Publicado: (2011) -
Technical standards for recording and interpretation of neonatal electroencephalogram in clinical practice
por: Cherian, Perumpillichira J., et al.
Publicado: (2009) -
Machine learning for solar array monitoring, optimization, and control
por: Rao, Sunil, et al.
Publicado: (2020)