Cargando…
Functional parcellation of the hippocampus by semi-supervised clustering of resting state fMRI data
Many unsupervised methods are widely used for parcellating the brain. However, unsupervised methods aren’t able to integrate prior information, obtained from such as exiting functional neuroanatomy studies, to parcellate the brain, whereas the prior information guided semi-supervised method can gene...
Autores principales: | Cheng, Hewei, Zhu, Hancan, Zheng, Qiang, Liu, Jie, He, Guanghua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7532162/ https://www.ncbi.nlm.nih.gov/pubmed/33009447 http://dx.doi.org/10.1038/s41598-020-73328-1 |
Ejemplares similares
-
Individualized Functional Parcellation of the Human Amygdala Using a Semi-supervised Clustering Method: A 7T Resting State fMRI Study
por: Zhang, Xianchang, et al.
Publicado: (2018) -
Concurrent brain parcellation and connectivity estimation via co‐clustering of resting state fMRI data: A novel approach
por: Cheng, Hewei, et al.
Publicado: (2021) -
Hippocampus Parcellation via Discriminative Embedded Clustering of fMRI Functional Connectivity
por: Peng, Limin, et al.
Publicado: (2023) -
Robust brain parcellation using sparse representation on resting-state fMRI
por: Zhang, Yu, et al.
Publicado: (2014) -
Which fMRI clustering gives good brain parcellations?
por: Thirion, Bertrand, et al.
Publicado: (2014)