Cargando…
Using machine learning-based analysis for behavioral differentiation between anxiety and depression
Anxiety and depression are distinct—albeit overlapping—psychiatric diseases, currently diagnosed by self-reported-symptoms. This research presents a new diagnostic methodology, which tests rigorously for differences in cognitive biases among subclinical anxious and depressed individuals. 125 partici...
Autores principales: | Richter, Thalia, Fishbain, Barak, Markus, Andrey, Richter-Levin, Gal, Okon-Singer, Hadas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7532220/ https://www.ncbi.nlm.nih.gov/pubmed/33009424 http://dx.doi.org/10.1038/s41598-020-72289-9 |
Ejemplares similares
-
Machine Learning-Based Behavioral Diagnostic Tools for Depression: Advances, Challenges, and Future Directions
por: Richter, Thalia, et al.
Publicado: (2021) -
How Social Experiences Affect Interpretation Bias Among Individuals With Non-clinical Depression: The Role of Ostracism
por: Bar-Sella, Avigail, et al.
Publicado: (2022) -
Identifying Variables That Predict Depression Following the General Lockdown During the COVID-19 Pandemic
por: Gozansky, Einav, et al.
Publicado: (2021) -
Enriched Environment Experience Overcomes Learning Deficits and Depressive-Like Behavior Induced by Juvenile Stress
por: Ilin, Yana, et al.
Publicado: (2009) -
Can Machine Learning Approaches Lead Toward Personalized Cognitive Training?
por: Shani, Reut, et al.
Publicado: (2019)