Cargando…
Identification of Potential Type II Diabetes in a Large-Scale Chinese Population Using a Systematic Machine Learning Framework
BACKGROUND: An estimated 425 million people globally have diabetes, accounting for 12% of the world's health expenditures, and the number continues to grow, placing a huge burden on the healthcare system, especially in those remote, underserved areas. METHODS: A total of 584,168 adult subjects...
Autores principales: | Xue, Mingyue, Su, Yinxia, Li, Chen, Wang, Shuxia, Yao, Hua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7532405/ https://www.ncbi.nlm.nih.gov/pubmed/33029536 http://dx.doi.org/10.1155/2020/6873891 |
Ejemplares similares
-
A nomogram model for screening the risk of diabetes in a large-scale Chinese population: an observational study from 345,718 participants
por: Xue, Mingyue, et al.
Publicado: (2020) -
A Machine Learning Based Framework to Identify and Classify Non-alcoholic Fatty Liver Disease in a Large-Scale Population
por: Ji, Weidong, et al.
Publicado: (2022) -
A simple nomogram score for screening patients with type 2 diabetes to detect those with hypertension: A cross-sectional study based on a large community survey in China
por: Xue, Mingyue, et al.
Publicado: (2020) -
A Non-Invasive Prediction Model for Non-Alcoholic Fatty Liver Disease in Adults with Type 2 Diabetes Based on the Population of Northern Urumqi, China
por: Xue, Mingyue, et al.
Publicado: (2021) -
Prevalence and Correlation of Metabolic Syndrome: A Cross-Sectional Study of Nearly 10 Million Multi-Ethnic Chinese Adults
por: Su, Yinxia, et al.
Publicado: (2020)