Cargando…

A New Approach for Detecting Sleep Apnea Using a Contactless Bed Sensor: Comparison Study

BACKGROUND: At present, there is an increased demand for accurate and personalized patient monitoring because of the various challenges facing health care systems. For instance, rising costs and lack of physicians are two serious problems affecting the patient’s care. Nonintrusive monitoring of vita...

Descripción completa

Detalles Bibliográficos
Autores principales: Sadek, Ibrahim, Heng, Terry Tan Soon, Seet, Edwin, Abdulrazak, Bessam
Formato: Online Artículo Texto
Lenguaje:English
Publicado: JMIR Publications 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7532465/
https://www.ncbi.nlm.nih.gov/pubmed/32945773
http://dx.doi.org/10.2196/18297
_version_ 1783589930385014784
author Sadek, Ibrahim
Heng, Terry Tan Soon
Seet, Edwin
Abdulrazak, Bessam
author_facet Sadek, Ibrahim
Heng, Terry Tan Soon
Seet, Edwin
Abdulrazak, Bessam
author_sort Sadek, Ibrahim
collection PubMed
description BACKGROUND: At present, there is an increased demand for accurate and personalized patient monitoring because of the various challenges facing health care systems. For instance, rising costs and lack of physicians are two serious problems affecting the patient’s care. Nonintrusive monitoring of vital signs is a potential solution to close current gaps in patient monitoring. As an example, bed-embedded ballistocardiogram (BCG) sensors can help physicians identify cardiac arrhythmia and obstructive sleep apnea (OSA) nonintrusively without interfering with the patient’s everyday activities. Detecting OSA using BCG sensors is gaining popularity among researchers because of its simple installation and accessibility, that is, their nonwearable nature. In the field of nonintrusive vital sign monitoring, a microbend fiber optic sensor (MFOS), among other sensors, has proven to be suitable. Nevertheless, few studies have examined apnea detection. OBJECTIVE: This study aims to assess the capabilities of an MFOS for nonintrusive vital signs and sleep apnea detection during an in-lab sleep study. Data were collected from patients with sleep apnea in the sleep laboratory at Khoo Teck Puat Hospital. METHODS: In total, 10 participants underwent full polysomnography (PSG), and the MFOS was placed under the patient’s mattress for BCG data collection. The apneic event detection algorithm was evaluated against the manually scored events obtained from the PSG study on a minute-by-minute basis. Furthermore, normalized mean absolute error (NMAE), normalized root mean square error (NRMSE), and mean absolute percentage error (MAPE) were employed to evaluate the sensor capabilities for vital sign detection, comprising heart rate (HR) and respiratory rate (RR). Vital signs were evaluated based on a 30-second time window, with an overlap of 15 seconds. In this study, electrocardiogram and thoracic effort signals were used as references to estimate the performance of the proposed vital sign detection algorithms. RESULTS: For the 10 patients recruited for the study, the proposed system achieved reasonable results compared with PSG for sleep apnea detection, such as an accuracy of 49.96% (SD 6.39), a sensitivity of 57.07% (SD 12.63), and a specificity of 45.26% (SD 9.51). In addition, the system achieved close results for HR and RR estimation, such as an NMAE of 5.42% (SD 0.57), an NRMSE of 6.54% (SD 0.56), and an MAPE of 5.41% (SD 0.58) for HR, whereas an NMAE of 11.42% (SD 2.62), an NRMSE of 13.85% (SD 2.78), and an MAPE of 11.60% (SD 2.84) for RR. CONCLUSIONS: Overall, the recommended system produced reasonably good results for apneic event detection, considering the fact that we are using a single-channel BCG sensor. Conversely, satisfactory results were obtained for vital sign detection when compared with the PSG outcomes. These results provide preliminary support for the potential use of the MFOS for sleep apnea detection.
format Online
Article
Text
id pubmed-7532465
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher JMIR Publications
record_format MEDLINE/PubMed
spelling pubmed-75324652020-10-16 A New Approach for Detecting Sleep Apnea Using a Contactless Bed Sensor: Comparison Study Sadek, Ibrahim Heng, Terry Tan Soon Seet, Edwin Abdulrazak, Bessam J Med Internet Res Original Paper BACKGROUND: At present, there is an increased demand for accurate and personalized patient monitoring because of the various challenges facing health care systems. For instance, rising costs and lack of physicians are two serious problems affecting the patient’s care. Nonintrusive monitoring of vital signs is a potential solution to close current gaps in patient monitoring. As an example, bed-embedded ballistocardiogram (BCG) sensors can help physicians identify cardiac arrhythmia and obstructive sleep apnea (OSA) nonintrusively without interfering with the patient’s everyday activities. Detecting OSA using BCG sensors is gaining popularity among researchers because of its simple installation and accessibility, that is, their nonwearable nature. In the field of nonintrusive vital sign monitoring, a microbend fiber optic sensor (MFOS), among other sensors, has proven to be suitable. Nevertheless, few studies have examined apnea detection. OBJECTIVE: This study aims to assess the capabilities of an MFOS for nonintrusive vital signs and sleep apnea detection during an in-lab sleep study. Data were collected from patients with sleep apnea in the sleep laboratory at Khoo Teck Puat Hospital. METHODS: In total, 10 participants underwent full polysomnography (PSG), and the MFOS was placed under the patient’s mattress for BCG data collection. The apneic event detection algorithm was evaluated against the manually scored events obtained from the PSG study on a minute-by-minute basis. Furthermore, normalized mean absolute error (NMAE), normalized root mean square error (NRMSE), and mean absolute percentage error (MAPE) were employed to evaluate the sensor capabilities for vital sign detection, comprising heart rate (HR) and respiratory rate (RR). Vital signs were evaluated based on a 30-second time window, with an overlap of 15 seconds. In this study, electrocardiogram and thoracic effort signals were used as references to estimate the performance of the proposed vital sign detection algorithms. RESULTS: For the 10 patients recruited for the study, the proposed system achieved reasonable results compared with PSG for sleep apnea detection, such as an accuracy of 49.96% (SD 6.39), a sensitivity of 57.07% (SD 12.63), and a specificity of 45.26% (SD 9.51). In addition, the system achieved close results for HR and RR estimation, such as an NMAE of 5.42% (SD 0.57), an NRMSE of 6.54% (SD 0.56), and an MAPE of 5.41% (SD 0.58) for HR, whereas an NMAE of 11.42% (SD 2.62), an NRMSE of 13.85% (SD 2.78), and an MAPE of 11.60% (SD 2.84) for RR. CONCLUSIONS: Overall, the recommended system produced reasonably good results for apneic event detection, considering the fact that we are using a single-channel BCG sensor. Conversely, satisfactory results were obtained for vital sign detection when compared with the PSG outcomes. These results provide preliminary support for the potential use of the MFOS for sleep apnea detection. JMIR Publications 2020-09-18 /pmc/articles/PMC7532465/ /pubmed/32945773 http://dx.doi.org/10.2196/18297 Text en ©Ibrahim Sadek, Terry Tan Soon Heng, Edwin Seet, Bessam Abdulrazak. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 18.09.2020. https://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in the Journal of Medical Internet Research, is properly cited. The complete bibliographic information, a link to the original publication on http://www.jmir.org/, as well as this copyright and license information must be included.
spellingShingle Original Paper
Sadek, Ibrahim
Heng, Terry Tan Soon
Seet, Edwin
Abdulrazak, Bessam
A New Approach for Detecting Sleep Apnea Using a Contactless Bed Sensor: Comparison Study
title A New Approach for Detecting Sleep Apnea Using a Contactless Bed Sensor: Comparison Study
title_full A New Approach for Detecting Sleep Apnea Using a Contactless Bed Sensor: Comparison Study
title_fullStr A New Approach for Detecting Sleep Apnea Using a Contactless Bed Sensor: Comparison Study
title_full_unstemmed A New Approach for Detecting Sleep Apnea Using a Contactless Bed Sensor: Comparison Study
title_short A New Approach for Detecting Sleep Apnea Using a Contactless Bed Sensor: Comparison Study
title_sort new approach for detecting sleep apnea using a contactless bed sensor: comparison study
topic Original Paper
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7532465/
https://www.ncbi.nlm.nih.gov/pubmed/32945773
http://dx.doi.org/10.2196/18297
work_keys_str_mv AT sadekibrahim anewapproachfordetectingsleepapneausingacontactlessbedsensorcomparisonstudy
AT hengterrytansoon anewapproachfordetectingsleepapneausingacontactlessbedsensorcomparisonstudy
AT seetedwin anewapproachfordetectingsleepapneausingacontactlessbedsensorcomparisonstudy
AT abdulrazakbessam anewapproachfordetectingsleepapneausingacontactlessbedsensorcomparisonstudy
AT sadekibrahim newapproachfordetectingsleepapneausingacontactlessbedsensorcomparisonstudy
AT hengterrytansoon newapproachfordetectingsleepapneausingacontactlessbedsensorcomparisonstudy
AT seetedwin newapproachfordetectingsleepapneausingacontactlessbedsensorcomparisonstudy
AT abdulrazakbessam newapproachfordetectingsleepapneausingacontactlessbedsensorcomparisonstudy