Cargando…

Alteration in angiotensin-converting enzyme 2 by PM(1) during the development of emphysema in rats

INTRODUCTION: Angiotensin-converting enzyme 2 (ACE2) provides an adhesion site for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Patients with COPD could have severe outcomes after SARS-CoV-2 infection. The objective of this study was to investigate ACE2 regulation by air p...

Descripción completa

Detalles Bibliográficos
Autores principales: Chuang, Hsiao-Chi, Chen, Yi-Ying, Hsiao, Ta-Chih, Chou, Hsiu-Chu, Kuo, Han-Pin, Feng, Po-Hao, Ho, Shu-Chuan, Chen, Jen-Kun, Chuang, Kai-Jen, Lee, Kang-Yun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: European Respiratory Society 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7533376/
https://www.ncbi.nlm.nih.gov/pubmed/33043050
http://dx.doi.org/10.1183/23120541.00174-2020
Descripción
Sumario:INTRODUCTION: Angiotensin-converting enzyme 2 (ACE2) provides an adhesion site for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Patients with COPD could have severe outcomes after SARS-CoV-2 infection. The objective of this study was to investigate ACE2 regulation by air pollution during the development of COPD. METHODS: Sprague Dawley rats were exposed to unconcentrated traffic-related air pollution for 3 and 6 months. We examined lung injury markers, oxidative stress, inflammation, emphysema, ACE2 and angiotensin II receptor type 1 (AT1) and 2 (AT2) in the lungs after exposure. RESULTS: Lung injury occurred due to an increase in permeability and lactate dehydrogenase cytotoxicity was observed after 6 months of exposure to fine particulate matter of <1 μm in aerodynamic diameter (PM(1)). An α(1)-antitrypsin deficiency and neutrophil elastase production with emphysema development were observed after 6 months of PM(1) exposure. 8-isoprostane and interleukin-6 were increased after 3 and 6 months of PM(1) exposure. Caspase-3 was increased after exposure to PM(1) for 6 months. Upregulation of ACE2 was found after 3 months of PM(1) exposure; however, ACE2 had decreased by 6 months of PM(1) exposure. AT1 and AT2 had significantly decreased after exposure to PM(1) for 6 months. Furthermore, smooth muscle hypertrophy had occurred after 6 months of PM(1) exposure. CONCLUSIONS: In conclusion, short-term exposure to PM(1) increased the ACE2 overexpression in lungs. Long-term exposure to PM(1) decreased the ACE2 overexpression in emphysema. Air pollution may be a risk for SARS-CoV-2 adhesion during the development of COPD.