Cargando…

miR-181d promotes cell proliferation via the IGF1/PI3K/AKT axis in glioma

Glioma is a malignant brain cancer that exhibits high invasive ability and poor prognosis. MicroRNA (miR)-181d has been reported to be involved in the development of glioma. Therefore, the aim of the present study was to investigate whether miR-181d affected cellular progression by influencing the i...

Descripción completa

Detalles Bibliográficos
Autores principales: Tang, Dong, Gao, Wenhong, Yang, Jian, Liu, Junhui, Zhao, Jian, Ge, Jian, Chen, Qianxue, Liu, Baohui
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7533453/
https://www.ncbi.nlm.nih.gov/pubmed/33000209
http://dx.doi.org/10.3892/mmr.2020.11464
Descripción
Sumario:Glioma is a malignant brain cancer that exhibits high invasive ability and poor prognosis. MicroRNA (miR)-181d has been reported to be involved in the development of glioma. Therefore, the aim of the present study was to investigate whether miR-181d affected cellular progression by influencing the insulin like growth factor (IGF1)/PI3K/AKT axis. Western blot analysis was performed to analyze the expression levels of specific proteins, and a Cell Counting Kit-8 assay was used to assess the proliferative ability of cells. Cell cycle progression and cellular apoptosis were both measured using flow cytometry. The results indicated that miR-181d promoted cellular proliferation and cell cycle progression, while suppressing cellular apoptosis via the IGF1/PI3K/AKT axis. It was demonstrated that the IGF1 and PI3K/AKT inhibitors reversed these observed functions of miR-181d. Furthermore, miR-181d enhanced the growth of glioma xenografts in vivo, promoted cell cycle progression and suppressed cellular apoptosis within glioma xenograft tissues. Therefore, this newly identified miR-181d/IGF1/PI3K/AKT axis may provide novel insights into the pathogenesis of glioma.