Cargando…
Mesenchymal stem cell-derived extracellular vesicles prevent neural stem cell hypoxia injury via promoting miR-210-3p expression
Neural stem cells (NSCs) have the potential to give rise to offspring cells and hypoxic injury can impair the function of NSCs. The present study investigated the effects of mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs) on NSC injury, as well as the underlying mechanisms. MSC-EVs...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
D.A. Spandidos
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7533502/ https://www.ncbi.nlm.nih.gov/pubmed/33000190 http://dx.doi.org/10.3892/mmr.2020.11454 |
_version_ | 1783590148409131008 |
---|---|
author | Li, Fang Zhang, Jie Liao, Rui Duan, Yongchun Tao, Lili Xu, Yuwei Chen, Anbao |
author_facet | Li, Fang Zhang, Jie Liao, Rui Duan, Yongchun Tao, Lili Xu, Yuwei Chen, Anbao |
author_sort | Li, Fang |
collection | PubMed |
description | Neural stem cells (NSCs) have the potential to give rise to offspring cells and hypoxic injury can impair the function of NSCs. The present study investigated the effects of mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs) on NSC injury, as well as the underlying mechanisms. MSC-EVs were isolated and identified via morphological and particle size analysis. Cobalt chloride was used to establish a hypoxic injury model in NSCs. Terminal deoxynucleotidyl transferase dUTP nick end labeling assay was conducted to detect apoptosis. Reverse transcription-quantitative PCR was performed to detect the expression levels of miR-210-3p, and western blotting was used to detect the expression levels of apoptosis-inducing factor (AIF) and Bcl-2 19 kDa interacting protein (BNIP3). Compared with the control group, NSC apoptosis, and the expression of miR-210-3p, AIF and BNIP3 were significantly higher in the cobalt chloride-induced hypoxia group. By contrast, treatment with MSC-EVs further increased miR-210-3p expression levels, but reduced NSC apoptosis and the expression levels of AIF and BNIP3 compared with the model group (P<0.05). In addition, miR-210-3p inhibitor reduced miR-210-3p expression, but promoted hypoxia-induced apoptosis and the expression levels of AIF and BNIP3 compared with the model group (P<0.05). Collectively, the results suggested that MSC-EVs prevented NSC hypoxia injury by promoting miR-210-3p expression, which might reduce AIF and BNIP3 expression levels and NSC apoptosis. |
format | Online Article Text |
id | pubmed-7533502 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | D.A. Spandidos |
record_format | MEDLINE/PubMed |
spelling | pubmed-75335022020-10-07 Mesenchymal stem cell-derived extracellular vesicles prevent neural stem cell hypoxia injury via promoting miR-210-3p expression Li, Fang Zhang, Jie Liao, Rui Duan, Yongchun Tao, Lili Xu, Yuwei Chen, Anbao Mol Med Rep Articles Neural stem cells (NSCs) have the potential to give rise to offspring cells and hypoxic injury can impair the function of NSCs. The present study investigated the effects of mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs) on NSC injury, as well as the underlying mechanisms. MSC-EVs were isolated and identified via morphological and particle size analysis. Cobalt chloride was used to establish a hypoxic injury model in NSCs. Terminal deoxynucleotidyl transferase dUTP nick end labeling assay was conducted to detect apoptosis. Reverse transcription-quantitative PCR was performed to detect the expression levels of miR-210-3p, and western blotting was used to detect the expression levels of apoptosis-inducing factor (AIF) and Bcl-2 19 kDa interacting protein (BNIP3). Compared with the control group, NSC apoptosis, and the expression of miR-210-3p, AIF and BNIP3 were significantly higher in the cobalt chloride-induced hypoxia group. By contrast, treatment with MSC-EVs further increased miR-210-3p expression levels, but reduced NSC apoptosis and the expression levels of AIF and BNIP3 compared with the model group (P<0.05). In addition, miR-210-3p inhibitor reduced miR-210-3p expression, but promoted hypoxia-induced apoptosis and the expression levels of AIF and BNIP3 compared with the model group (P<0.05). Collectively, the results suggested that MSC-EVs prevented NSC hypoxia injury by promoting miR-210-3p expression, which might reduce AIF and BNIP3 expression levels and NSC apoptosis. D.A. Spandidos 2020-11 2020-08-21 /pmc/articles/PMC7533502/ /pubmed/33000190 http://dx.doi.org/10.3892/mmr.2020.11454 Text en Copyright: © Li et al. This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made. |
spellingShingle | Articles Li, Fang Zhang, Jie Liao, Rui Duan, Yongchun Tao, Lili Xu, Yuwei Chen, Anbao Mesenchymal stem cell-derived extracellular vesicles prevent neural stem cell hypoxia injury via promoting miR-210-3p expression |
title | Mesenchymal stem cell-derived extracellular vesicles prevent neural stem cell hypoxia injury via promoting miR-210-3p expression |
title_full | Mesenchymal stem cell-derived extracellular vesicles prevent neural stem cell hypoxia injury via promoting miR-210-3p expression |
title_fullStr | Mesenchymal stem cell-derived extracellular vesicles prevent neural stem cell hypoxia injury via promoting miR-210-3p expression |
title_full_unstemmed | Mesenchymal stem cell-derived extracellular vesicles prevent neural stem cell hypoxia injury via promoting miR-210-3p expression |
title_short | Mesenchymal stem cell-derived extracellular vesicles prevent neural stem cell hypoxia injury via promoting miR-210-3p expression |
title_sort | mesenchymal stem cell-derived extracellular vesicles prevent neural stem cell hypoxia injury via promoting mir-210-3p expression |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7533502/ https://www.ncbi.nlm.nih.gov/pubmed/33000190 http://dx.doi.org/10.3892/mmr.2020.11454 |
work_keys_str_mv | AT lifang mesenchymalstemcellderivedextracellularvesiclespreventneuralstemcellhypoxiainjuryviapromotingmir2103pexpression AT zhangjie mesenchymalstemcellderivedextracellularvesiclespreventneuralstemcellhypoxiainjuryviapromotingmir2103pexpression AT liaorui mesenchymalstemcellderivedextracellularvesiclespreventneuralstemcellhypoxiainjuryviapromotingmir2103pexpression AT duanyongchun mesenchymalstemcellderivedextracellularvesiclespreventneuralstemcellhypoxiainjuryviapromotingmir2103pexpression AT taolili mesenchymalstemcellderivedextracellularvesiclespreventneuralstemcellhypoxiainjuryviapromotingmir2103pexpression AT xuyuwei mesenchymalstemcellderivedextracellularvesiclespreventneuralstemcellhypoxiainjuryviapromotingmir2103pexpression AT chenanbao mesenchymalstemcellderivedextracellularvesiclespreventneuralstemcellhypoxiainjuryviapromotingmir2103pexpression |