Cargando…
Cryptotanshinone alleviates polycystic ovary syndrome in rats by regulating the HMGB1/TLR4/NF-κB signaling pathway
Cryptotanshinone (CRY) has been demonstrated to reverse reproductive disorders. However, whether CRY is effective in the treatment of polycystic ovary syndrome (PCOS) remains unknown. The aim of the present study was to evaluate the therapeutic potential of CRY in PCOS. A rat model of PCOS was estab...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
D.A. Spandidos
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7533513/ https://www.ncbi.nlm.nih.gov/pubmed/32901834 http://dx.doi.org/10.3892/mmr.2020.11469 |
_version_ | 1783590150976045056 |
---|---|
author | Yang, Yijiao Yang, Ling Qi, Cao Hu, Guohua Wang, Longhui Sun, Zhuojun Ni, Xiaorong |
author_facet | Yang, Yijiao Yang, Ling Qi, Cao Hu, Guohua Wang, Longhui Sun, Zhuojun Ni, Xiaorong |
author_sort | Yang, Yijiao |
collection | PubMed |
description | Cryptotanshinone (CRY) has been demonstrated to reverse reproductive disorders. However, whether CRY is effective in the treatment of polycystic ovary syndrome (PCOS) remains unknown. The aim of the present study was to evaluate the therapeutic potential of CRY in PCOS. A rat model of PCOS was established by daily injection of human chorionic gonadotropin and insulin for 22 days. Total body weight and ovarian weight, as well as the levels of luteinizing hormone (LH) and the LH to follicle-stimulating hormone (FSH) ratio (LH/FSH) significantly increased in rats with PCOS, compared with controls. Moreover, the levels of testosterone (T), tumor necrosis factor (TNF)-α and high-mobility group box 1 protein (HMGB1) also increased. However, CRY treatment attenuated the increase in body weight, ovarian weight, LH, LH/FSH ratio, T, TNF-α and HMGB1 levels, compared with the PCOS group. Treatment with CRY also reduced NF-κB/p65, HMGB1 and toll-like receptor (TLR)4 mRNA and protein expression levels in the ovarian tissue and granulosa cells, both in vitro and in vivo. Thus, CRY significantly mitigated the changes in body weight, ovary weight, hormone levels and inflammatory factor levels observed in rats with PCOS. Thus, CRY protects against PCOS-induced damage of ovarian tissue, possibly through a regulatory pathway involving HMGB1, TLR4 and NF-κB. |
format | Online Article Text |
id | pubmed-7533513 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | D.A. Spandidos |
record_format | MEDLINE/PubMed |
spelling | pubmed-75335132020-10-07 Cryptotanshinone alleviates polycystic ovary syndrome in rats by regulating the HMGB1/TLR4/NF-κB signaling pathway Yang, Yijiao Yang, Ling Qi, Cao Hu, Guohua Wang, Longhui Sun, Zhuojun Ni, Xiaorong Mol Med Rep Articles Cryptotanshinone (CRY) has been demonstrated to reverse reproductive disorders. However, whether CRY is effective in the treatment of polycystic ovary syndrome (PCOS) remains unknown. The aim of the present study was to evaluate the therapeutic potential of CRY in PCOS. A rat model of PCOS was established by daily injection of human chorionic gonadotropin and insulin for 22 days. Total body weight and ovarian weight, as well as the levels of luteinizing hormone (LH) and the LH to follicle-stimulating hormone (FSH) ratio (LH/FSH) significantly increased in rats with PCOS, compared with controls. Moreover, the levels of testosterone (T), tumor necrosis factor (TNF)-α and high-mobility group box 1 protein (HMGB1) also increased. However, CRY treatment attenuated the increase in body weight, ovarian weight, LH, LH/FSH ratio, T, TNF-α and HMGB1 levels, compared with the PCOS group. Treatment with CRY also reduced NF-κB/p65, HMGB1 and toll-like receptor (TLR)4 mRNA and protein expression levels in the ovarian tissue and granulosa cells, both in vitro and in vivo. Thus, CRY significantly mitigated the changes in body weight, ovary weight, hormone levels and inflammatory factor levels observed in rats with PCOS. Thus, CRY protects against PCOS-induced damage of ovarian tissue, possibly through a regulatory pathway involving HMGB1, TLR4 and NF-κB. D.A. Spandidos 2020-11 2020-08-28 /pmc/articles/PMC7533513/ /pubmed/32901834 http://dx.doi.org/10.3892/mmr.2020.11469 Text en Copyright: © Yang et al. This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made. |
spellingShingle | Articles Yang, Yijiao Yang, Ling Qi, Cao Hu, Guohua Wang, Longhui Sun, Zhuojun Ni, Xiaorong Cryptotanshinone alleviates polycystic ovary syndrome in rats by regulating the HMGB1/TLR4/NF-κB signaling pathway |
title | Cryptotanshinone alleviates polycystic ovary syndrome in rats by regulating the HMGB1/TLR4/NF-κB signaling pathway |
title_full | Cryptotanshinone alleviates polycystic ovary syndrome in rats by regulating the HMGB1/TLR4/NF-κB signaling pathway |
title_fullStr | Cryptotanshinone alleviates polycystic ovary syndrome in rats by regulating the HMGB1/TLR4/NF-κB signaling pathway |
title_full_unstemmed | Cryptotanshinone alleviates polycystic ovary syndrome in rats by regulating the HMGB1/TLR4/NF-κB signaling pathway |
title_short | Cryptotanshinone alleviates polycystic ovary syndrome in rats by regulating the HMGB1/TLR4/NF-κB signaling pathway |
title_sort | cryptotanshinone alleviates polycystic ovary syndrome in rats by regulating the hmgb1/tlr4/nf-κb signaling pathway |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7533513/ https://www.ncbi.nlm.nih.gov/pubmed/32901834 http://dx.doi.org/10.3892/mmr.2020.11469 |
work_keys_str_mv | AT yangyijiao cryptotanshinonealleviatespolycysticovarysyndromeinratsbyregulatingthehmgb1tlr4nfkbsignalingpathway AT yangling cryptotanshinonealleviatespolycysticovarysyndromeinratsbyregulatingthehmgb1tlr4nfkbsignalingpathway AT qicao cryptotanshinonealleviatespolycysticovarysyndromeinratsbyregulatingthehmgb1tlr4nfkbsignalingpathway AT huguohua cryptotanshinonealleviatespolycysticovarysyndromeinratsbyregulatingthehmgb1tlr4nfkbsignalingpathway AT wanglonghui cryptotanshinonealleviatespolycysticovarysyndromeinratsbyregulatingthehmgb1tlr4nfkbsignalingpathway AT sunzhuojun cryptotanshinonealleviatespolycysticovarysyndromeinratsbyregulatingthehmgb1tlr4nfkbsignalingpathway AT nixiaorong cryptotanshinonealleviatespolycysticovarysyndromeinratsbyregulatingthehmgb1tlr4nfkbsignalingpathway |