Cargando…
Implementation and Calibration of a Deep Neural Network to Predict Parameters of Left Ventricular Systolic Function Based on Pulmonary and Systemic Arterial Pressure Signals
The evaluation of cardiac contractility by the assessment of the ventricular systolic elastance function is clinically challenging and cannot be easily obtained at the bedside. In this work, we present a framework characterizing left ventricular systolic function from clinically readily available da...
Autores principales: | Bonnemain, Jean, Pegolotti, Luca, Liaudet, Lucas, Deparis, Simone |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7533610/ https://www.ncbi.nlm.nih.gov/pubmed/33071803 http://dx.doi.org/10.3389/fphys.2020.01086 |
Ejemplares similares
-
Deep Neural Network to Accurately Predict Left Ventricular Systolic Function Under Mechanical Assistance
por: Bonnemain, Jean, et al.
Publicado: (2021) -
Aortic systolic and pulse pressure invasively and non-invasively obtained: Comparative analysis of recording techniques, arterial sites of measurement, waveform analysis algorithms and calibration methods
por: Bia, Daniel, et al.
Publicado: (2023) -
Model order reduction of flow based on a modular geometrical approximation of blood vessels
por: Pegolotti, Luca, et al.
Publicado: (2021) -
Estimation of Left Ventricular End-Systolic Elastance From Brachial Pressure Waveform via Deep Learning
por: Bikia, Vasiliki, et al.
Publicado: (2021) -
The Right Ventricle in COVID-19
por: Bonnemain, Jean, et al.
Publicado: (2021)