Cargando…
National population mapping from sparse survey data: A hierarchical Bayesian modeling framework to account for uncertainty
Population estimates are critical for government services, development projects, and public health campaigns. Such data are typically obtained through a national population and housing census. However, population estimates can quickly become inaccurate in localized areas, particularly where migratio...
Autores principales: | Leasure, Douglas R., Jochem, Warren C., Weber, Eric M., Seaman, Vincent, Tatem, Andrew J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7533662/ https://www.ncbi.nlm.nih.gov/pubmed/32929009 http://dx.doi.org/10.1073/pnas.1913050117 |
Ejemplares similares
-
BANDITS: Bayesian differential splicing accounting for sample-to-sample variability and mapping uncertainty
por: Tiberi, Simone, et al.
Publicado: (2020) -
A Bayesian framework to account for uncertainty due to missing binary outcome data in pairwise meta‐analysis
por: Turner, N. L., et al.
Publicado: (2015) -
Improving the identification of antigenic sites in the H1N1 influenza virus through accounting for the experimental structure in a sparse hierarchical Bayesian model
por: Davies, Vinny, et al.
Publicado: (2019) -
A Hierarchical Bayesian Model to Quantify Uncertainty of Stream Water Temperature Forecasts
por: Bal, Guillaume, et al.
Publicado: (2014) -
Quantifying Uncertainty of the Estimated Visual Acuity Behavioral Function With Hierarchical Bayesian Modeling
por: Zhao, Yukai, et al.
Publicado: (2021)