Cargando…
Controlled manual loading of body tissues: towards the next generation of pressure algometer
Assessing the responses of body tissue subjected to mechanical load is a fundamental component of the clinical examination, psychophysical assessments and bioengineering research. The forces applied during such assessments are usually generated manually, via the hands of the tester, and aimed at dis...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7534174/ https://www.ncbi.nlm.nih.gov/pubmed/33012288 http://dx.doi.org/10.1186/s12998-020-00340-7 |
Sumario: | Assessing the responses of body tissue subjected to mechanical load is a fundamental component of the clinical examination, psychophysical assessments and bioengineering research. The forces applied during such assessments are usually generated manually, via the hands of the tester, and aimed at discreet tissue sites. It is therefore desirable to objectively quantify and optimise the control of manually applied force. However, current laboratory-grade manual devices and commercial software packages, in particular pressure algometer systems, are generally inflexible and expensive. This paper introduces and discusses several principles that should be implemented as design goals within a flexible, generic software application, given currently available force measurement hardware. We also discuss pitfalls that clinicians and researchers might face when using current pressure algometer systems and provide examples of these. Finally, we present our implementation of a pressure algometer system that achieves these goals in an efficient and affordable way for researchers and clinicians. As part of this effort, we will be sharing our configurable software application via a software repository. |
---|