Cargando…
Stacking fault energy prediction for austenitic steels: thermodynamic modeling vs. machine learning
Stacking fault energy (SFE) is of the most critical microstructure attribute for controlling the deformation mechanism and optimizing mechanical properties of austenitic steels, while there are no accurate and straightforward computational tools for modeling it. In this work, we applied both thermod...
Autores principales: | Wang, Xin, Xiong, Wei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7534312/ https://www.ncbi.nlm.nih.gov/pubmed/33061835 http://dx.doi.org/10.1080/14686996.2020.1808433 |
Ejemplares similares
-
Plastic accommodation at homophase interfaces between nanotwinned and recrystallized grains in an austenitic duplex-microstructured steel
por: Gutierrez-Urrutia, Iván, et al.
Publicado: (2016) -
Impact of interstitial elements on the stacking fault energy of an equiatomic CoCrNi medium entropy alloy: theory and experiments
por: Moravcik, Igor, et al.
Publicado: (2022) -
Corrosion rate prediction and influencing factors evaluation of low-alloy steels in marine atmosphere using machine learning approach
por: Yan, Luchun, et al.
Publicado: (2020) -
Cryogenic study of the magnetic and thermal stability of retained austenite in nanostructured bainite
por: Argüelles, Arántzazu, et al.
Publicado: (2019) -
Automatic steel labeling on certain microstructural constituents with image processing and machine learning tools
por: Bulgarevich, Dmitry S., et al.
Publicado: (2019)