Cargando…

Detecting New Allies: Modifier Screen Identifies a Genetic Interaction Between Imaginal disc growth factor 3 and combover, a Rho-kinase Substrate, During Dorsal Appendage Tube Formation in Drosophila

Biological tube formation underlies organ development and, when disrupted, can cause severe birth defects. To investigate the genetic basis of tubulogenesis, we study the formation of Drosophila melanogaster eggshell structures, called dorsal appendages, which are produced by epithelial tubes. Previ...

Descripción completa

Detalles Bibliográficos
Autores principales: Espinoza, Claudia Y., Berg, Celeste A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Genetics Society of America 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7534437/
https://www.ncbi.nlm.nih.gov/pubmed/32855169
http://dx.doi.org/10.1534/g3.120.401476
_version_ 1783590313232695296
author Espinoza, Claudia Y.
Berg, Celeste A.
author_facet Espinoza, Claudia Y.
Berg, Celeste A.
author_sort Espinoza, Claudia Y.
collection PubMed
description Biological tube formation underlies organ development and, when disrupted, can cause severe birth defects. To investigate the genetic basis of tubulogenesis, we study the formation of Drosophila melanogaster eggshell structures, called dorsal appendages, which are produced by epithelial tubes. Previously we found that precise levels of Drosophila Chitinase-Like Proteins (CLPs), encoded by the Imaginal disc growth factor (Idgf) gene family, are needed to regulate dorsal-appendage tube closure and tube migration. To identify factors that act in the Idgf pathway, we developed a genetic modifier screen based on the finding that overexpressing Idgf3 causes dorsal appendage defects with ∼50% frequency. Using a library of partially overlapping heterozygous deficiencies, we scanned chromosome 3L and found regions that enhanced or suppressed the Idgf3-overexpression phenotype. Using smaller deletions, RNAi, and mutant alleles, we further mapped five regions and refined the interactions to 58 candidate genes. Importantly, mutant alleles identified combover (cmb), a substrate of Rho-kinase (Rok) and a component of the Planar Cell Polarity (PCP) pathway, as an Idgf3-interacting gene: loss of function enhanced while gain of function suppressed the dorsal appendage defects. Since PCP drives cell intercalation in other systems, we asked if cmb/+ affected cell intercalation in our model, but we found no evidence of its involvement in this step. Instead, we found that loss of cmb dominantly enhanced tube defects associated with Idgf3 overexpression by expanding the apical area of dorsal appendage cells. Apical surface area determines tube volume and shape; in this way, Idgf3 and cmb regulate tube morphology.
format Online
Article
Text
id pubmed-7534437
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Genetics Society of America
record_format MEDLINE/PubMed
spelling pubmed-75344372020-10-13 Detecting New Allies: Modifier Screen Identifies a Genetic Interaction Between Imaginal disc growth factor 3 and combover, a Rho-kinase Substrate, During Dorsal Appendage Tube Formation in Drosophila Espinoza, Claudia Y. Berg, Celeste A. G3 (Bethesda) Mutant Screen Report Biological tube formation underlies organ development and, when disrupted, can cause severe birth defects. To investigate the genetic basis of tubulogenesis, we study the formation of Drosophila melanogaster eggshell structures, called dorsal appendages, which are produced by epithelial tubes. Previously we found that precise levels of Drosophila Chitinase-Like Proteins (CLPs), encoded by the Imaginal disc growth factor (Idgf) gene family, are needed to regulate dorsal-appendage tube closure and tube migration. To identify factors that act in the Idgf pathway, we developed a genetic modifier screen based on the finding that overexpressing Idgf3 causes dorsal appendage defects with ∼50% frequency. Using a library of partially overlapping heterozygous deficiencies, we scanned chromosome 3L and found regions that enhanced or suppressed the Idgf3-overexpression phenotype. Using smaller deletions, RNAi, and mutant alleles, we further mapped five regions and refined the interactions to 58 candidate genes. Importantly, mutant alleles identified combover (cmb), a substrate of Rho-kinase (Rok) and a component of the Planar Cell Polarity (PCP) pathway, as an Idgf3-interacting gene: loss of function enhanced while gain of function suppressed the dorsal appendage defects. Since PCP drives cell intercalation in other systems, we asked if cmb/+ affected cell intercalation in our model, but we found no evidence of its involvement in this step. Instead, we found that loss of cmb dominantly enhanced tube defects associated with Idgf3 overexpression by expanding the apical area of dorsal appendage cells. Apical surface area determines tube volume and shape; in this way, Idgf3 and cmb regulate tube morphology. Genetics Society of America 2020-08-27 /pmc/articles/PMC7534437/ /pubmed/32855169 http://dx.doi.org/10.1534/g3.120.401476 Text en Copyright © 2020 Espinoza, Berg http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Mutant Screen Report
Espinoza, Claudia Y.
Berg, Celeste A.
Detecting New Allies: Modifier Screen Identifies a Genetic Interaction Between Imaginal disc growth factor 3 and combover, a Rho-kinase Substrate, During Dorsal Appendage Tube Formation in Drosophila
title Detecting New Allies: Modifier Screen Identifies a Genetic Interaction Between Imaginal disc growth factor 3 and combover, a Rho-kinase Substrate, During Dorsal Appendage Tube Formation in Drosophila
title_full Detecting New Allies: Modifier Screen Identifies a Genetic Interaction Between Imaginal disc growth factor 3 and combover, a Rho-kinase Substrate, During Dorsal Appendage Tube Formation in Drosophila
title_fullStr Detecting New Allies: Modifier Screen Identifies a Genetic Interaction Between Imaginal disc growth factor 3 and combover, a Rho-kinase Substrate, During Dorsal Appendage Tube Formation in Drosophila
title_full_unstemmed Detecting New Allies: Modifier Screen Identifies a Genetic Interaction Between Imaginal disc growth factor 3 and combover, a Rho-kinase Substrate, During Dorsal Appendage Tube Formation in Drosophila
title_short Detecting New Allies: Modifier Screen Identifies a Genetic Interaction Between Imaginal disc growth factor 3 and combover, a Rho-kinase Substrate, During Dorsal Appendage Tube Formation in Drosophila
title_sort detecting new allies: modifier screen identifies a genetic interaction between imaginal disc growth factor 3 and combover, a rho-kinase substrate, during dorsal appendage tube formation in drosophila
topic Mutant Screen Report
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7534437/
https://www.ncbi.nlm.nih.gov/pubmed/32855169
http://dx.doi.org/10.1534/g3.120.401476
work_keys_str_mv AT espinozaclaudiay detectingnewalliesmodifierscreenidentifiesageneticinteractionbetweenimaginaldiscgrowthfactor3andcomboverarhokinasesubstrateduringdorsalappendagetubeformationindrosophila
AT bergcelestea detectingnewalliesmodifierscreenidentifiesageneticinteractionbetweenimaginaldiscgrowthfactor3andcomboverarhokinasesubstrateduringdorsalappendagetubeformationindrosophila