Cargando…

Risk prediction and risk factor analysis of urban logistics to public security based on PSO-GRNN algorithm

For the complicated operation process, many risk factors, and long cycle of urban logistics, it is difficult to manage the security of urban logistics and it enhances the risk. Therefore, to study a set of effective management mode for the safe operation of urban logistics and improve the risk predi...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, Mingjing, Ji, Shouwen, Wei, Zhenlin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7535052/
https://www.ncbi.nlm.nih.gov/pubmed/33017446
http://dx.doi.org/10.1371/journal.pone.0238443
Descripción
Sumario:For the complicated operation process, many risk factors, and long cycle of urban logistics, it is difficult to manage the security of urban logistics and it enhances the risk. Therefore, to study a set of effective management mode for the safe operation of urban logistics and improve the risk prediction mechanism, is the primary research item of urban logistics security management. This paper summarizes the risk factors to public security in the process of urban logistics, including pick up, warehouse storage, transport, and the end distribution. Generalized regression neural network (GRNN) is combined with particle swarm optimization (PSO) to predict accidents, and the Apriori algorithm is used to analyze the combination of high-frequency risk factors. The results show that the method of combining GRNN with PSO is effective in accident prediction and has a powerful generalization ability. It can prevent the occurrence of unnecessary urban logistics public accidents, improve the ability of relevant departments to deal with emergency incidents, and minimize the impact of urban logistics accidents on social and public security.