Cargando…
Hybrid algorithms for generating optimal designs for discriminating multiple nonlinear models under various error distributional assumptions
Finding a model-based optimal design that can optimally discriminate among a class of plausible models is a difficult task because the design criterion is non-differentiable and requires 2 or more layers of nested optimization. We propose hybrid algorithms based on particle swarm optimization (PSO)...
Autores principales: | Chen, Ray-Bing, Chen, Ping-Yang, Hsu, Cheng-Lin, Wong, Weng Kee |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7535070/ https://www.ncbi.nlm.nih.gov/pubmed/33017415 http://dx.doi.org/10.1371/journal.pone.0239864 |
Ejemplares similares
-
Multiple Linear Regressions by Maximizing the Likelihood under Assumption of Generalized Gauss-Laplace Distribution of the Error
por: Jäntschi, Lorentz, et al.
Publicado: (2016) -
Assumption-free estimation of the genetic contribution to refractive error across childhood
por: Guggenheim, Jeremy A., et al.
Publicado: (2015) -
Dataset of reverse osmosis membrane transport properties calculated with and without assumptions about concentration polarization and solute rejection and the errors associated with each assumption
por: Armstrong, Mikayla D., et al.
Publicado: (2022) -
Understanding of Various Type of Unambiguous Discrimination in View of Coherence Distribution
por: Namkung, Min, et al.
Publicado: (2020) -
Temporal Distinctiveness in Task Switching: Assessing the Mixture-Distribution Assumption
por: Grange, James A.
Publicado: (2016)