Cargando…

Novel 3D printed integral customized acetabular prosthesis for anatomical rotation center restoration in hip arthroplasty for developmental dysplasia of the hip crowe type III: A Case Report

RATIONALE: Exact restoration of the rotation center in total hip arthroplasty (THA) is technically challenging in patients with end-stage osteoarthritis due to developmental dysplasia of the hip (DDH), especially in the Crowe type II and III procedures. The technical difficulty is attributable to th...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Heng, Liu, Yang, Dong, Qirong, Guan, Jianzhong, Zhou, Jiansheng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Lippincott Williams & Wilkins 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7535692/
https://www.ncbi.nlm.nih.gov/pubmed/33019472
http://dx.doi.org/10.1097/MD.0000000000022578
Descripción
Sumario:RATIONALE: Exact restoration of the rotation center in total hip arthroplasty (THA) is technically challenging in patients with end-stage osteoarthritis due to developmental dysplasia of the hip (DDH), especially in the Crowe type II and III procedures. The technical difficulty is attributable to the complex acetabular changes. In this study, a novel 3-dimensional (3D) printed integral customized acetabular prosthesis for anatomical rotation restoration in THA for DDH Crowe type III was developed using patient-specific Computer-aided design and additive manufacturing (AM) methods. PATIENT CONCERNS: A 69-year-old female patient had developed left hip joint pain and restricted movement for 40 years; the symptoms had increased in the past 5 months. Pain, limited motion of the left hip joint, and lower limb length discrepancy were noted during physical examination. DIAGNOSIS: The patient was diagnosed with left hip end-stage osteoarthritis secondary to DDH (Crowe type III). INTERVENTION: A 3D printed acetabulum model was manufactured and a simulated operation was performed to improve the accuracy of reconstruction of the rotation center and bone defect. A 3D printed titanium alloy integral customized acetabular prosthesis was designed according to the result of simulated operation. The integral customized prothesis was implanted subsequently via the posterolateral approach. Radiography of the pelvis and Harris score assessment were performed during the perioperative period as well as at the 6- and 12-month follow-up. OUTCOMES: The 3D printed integral customized acetabular prosthesis matched precisely with the reamed acetabulum. The rotation center was restored and the bone defect was exactly reconstructed. There were no signs of prosthetic loosening at the 12-month follow-up. The Harris score gradually improved during the follow-up period. LESSONS: Satisfactory results of hip rotation restoration and bone defect reconstruction could be achieved by using 3D printed integral customized acetabular prosthesis, which provides a promising way to reconstruct the acetabulum in patients with DDH anatomically and rapidly for THA.