Cargando…
Data segmentation based on the local intrinsic dimension
One of the founding paradigms of machine learning is that a small number of variables is often sufficient to describe high-dimensional data. The minimum number of variables required is called the intrinsic dimension (ID) of the data. Contrary to common intuition, there are cases where the ID varies...
Autores principales: | Allegra, Michele, Facco, Elena, Denti, Francesco, Laio, Alessandro, Mira, Antonietta |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7536196/ https://www.ncbi.nlm.nih.gov/pubmed/33020515 http://dx.doi.org/10.1038/s41598-020-72222-0 |
Ejemplares similares
-
The generalized ratios intrinsic dimension estimator
por: Denti, Francesco, et al.
Publicado: (2022) -
The intrinsic dimension of protein sequence evolution
por: Facco, Elena, et al.
Publicado: (2019) -
Estimating the intrinsic dimension of datasets by a minimal neighborhood information
por: Facco, Elena, et al.
Publicado: (2017) -
A global perspective on the intrinsic dimensionality of COVID-19 data
por: Varghese, Abhishek, et al.
Publicado: (2023) -
Intrinsic dimension estimation for locally undersampled data
por: Erba, Vittorio, et al.
Publicado: (2019)