Cargando…
Using topological data analysis and pseudo time series to infer temporal phenotypes from electronic health records
Temporal phenotyping enables clinicians to better understand observable characteristics of a disease as it progresses. Modelling disease progression that captures interactions between phenotypes is inherently challenging. Temporal models that capture change in disease over time can identify the key...
Autores principales: | Dagliati, Arianna, Geifman, Nophar, Peek, Niels, Holmes, John H., Sacchi, Lucia, Bellazzi, Riccardo, Sajjadi, Seyed Erfan, Tucker, Allan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Science Publishing
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7536308/ https://www.ncbi.nlm.nih.gov/pubmed/32972659 http://dx.doi.org/10.1016/j.artmed.2020.101930 |
Ejemplares similares
-
Integrated Multi-Omics Analyses in Oncology: A Review of Machine Learning Methods and Tools
por: Nicora, Giovanna, et al.
Publicado: (2020) -
Sex and APOE genotype differences related to statin use in the aging population
por: Dagliati, Arianna, et al.
Publicado: (2021) -
OptiMissP: A dashboard to assess missingness in proteomic data-independent acquisition mass spectrometry
por: Arioli, Angelica, et al.
Publicado: (2021) -
A Process Mining Pipeline to Characterize COVID-19 Patients' Trajectories and Identify Relevant Temporal Phenotypes From EHR Data
por: Dagliati, Arianna, et al.
Publicado: (2022) -
Clinical trial data reuse – overcoming complexities in trial design and data sharing
por: Wilkinson, Toby, et al.
Publicado: (2019)