Cargando…
Deep Learning for Diagnostic Binary Classification of Multiple-Lesion Skin Diseases
Background: Diagnosis of skin diseases is often challenging and computer-aided diagnostic tools are urgently needed to underpin decision making. Objective: To develop a convolutional neural network model to classify clinically relevant selected multiple-lesion skin diseases, this in accordance to th...
Autores principales: | Thomsen, Kenneth, Christensen, Anja Liljedahl, Iversen, Lars, Lomholt, Hans Bredsted, Winther, Ole |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7536339/ https://www.ncbi.nlm.nih.gov/pubmed/33072786 http://dx.doi.org/10.3389/fmed.2020.574329 |
Ejemplares similares
-
Classification of clinical skin lesions with double-branch networks
por: Wang, Hui, et al.
Publicado: (2023) -
Effects of Label Noise on Deep Learning-Based Skin Cancer Classification
por: Hekler, Achim, et al.
Publicado: (2020) -
Skin lesion classification using multi-resolution empirical mode decomposition and local binary pattern
por: Samsudin, Siti Salbiah, et al.
Publicado: (2022) -
Convolutional Neural Network for Skin Lesion Classification: Understanding the Fundamentals Through Hands-On Learning
por: Cullell-Dalmau, Marta, et al.
Publicado: (2021) -
Classification of Skin Cancer Lesions Using Explainable Deep Learning
por: Zia Ur Rehman, Muhammad, et al.
Publicado: (2022)