Cargando…
Excess cerebral oxygen delivery follows return of spontaneous circulation in near-term asphyxiated lambs
Hypoxic-ischaemia renders the neonatal brain susceptible to early secondary injury from oxidative stress and impaired autoregulation. We aimed to describe cerebral oxygen kinetics and haemodynamics immediately following return of spontaneous circulation (ROSC) and evaluate non-invasive parameters to...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7536421/ https://www.ncbi.nlm.nih.gov/pubmed/33020561 http://dx.doi.org/10.1038/s41598-020-73453-x |
Sumario: | Hypoxic-ischaemia renders the neonatal brain susceptible to early secondary injury from oxidative stress and impaired autoregulation. We aimed to describe cerebral oxygen kinetics and haemodynamics immediately following return of spontaneous circulation (ROSC) and evaluate non-invasive parameters to facilitate bedside monitoring. Near-term sheep fetuses [139 ± 2 (SD) days gestation, n = 16] were instrumented to measure carotid artery (CA) flow, pressure, right brachial arterial and jugular venous saturation (SaO(2) and SvO(2), respectively). Cerebral oxygenation (crSO(2)) was measured using near-infrared spectroscopy (NIRS). Following induction of severe asphyxia, lambs received cardiopulmonary resuscitation using 100% oxygen until ROSC, with oxygen subsequently weaned according to saturation nomograms as per current guidelines. We found that oxygen consumption did not rise following ROSC, but oxygen delivery was markedly elevated until 15 min after ROSC. CrSO(2) and heart rate each correlated with oxygen delivery. SaO(2) remained > 90% and was less useful for identifying trends in oxygen delivery. CrSO(2) correlated inversely with cerebral fractional oxygen extraction. In conclusion, ROSC from perinatal asphyxia is characterised by excess oxygen delivery that is driven by rapid increases in cerebrovascular pressure, flow, and oxygen saturation, and may be monitored non-invasively. Further work to describe and limit injury mediated by oxygen toxicity following ROSC is warranted. |
---|