Cargando…

IL-4R alpha deficiency influences hippocampal-BDNF signaling pathway to impair reference memory

Like pro-inflammatory cytokines, the role of anti-inflammatory cytokines in both learning and memory has been investigated, revealing beneficial effects for both interleukin-4 and interleukin-13 via the common interleukin-4 receptor alpha chain complex. In this study, using the Morris water maze spa...

Descripción completa

Detalles Bibliográficos
Autores principales: Brombacher, T. M., Berkiks, I., Pillay, S., Scibiorek, M., Moses, B. O., Brombacher, F.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7536433/
https://www.ncbi.nlm.nih.gov/pubmed/33020569
http://dx.doi.org/10.1038/s41598-020-73574-3
Descripción
Sumario:Like pro-inflammatory cytokines, the role of anti-inflammatory cytokines in both learning and memory has been investigated, revealing beneficial effects for both interleukin-4 and interleukin-13 via the common interleukin-4 receptor alpha chain complex. In this study, using the Morris water maze spatial task for cognition, we compared interleukin-4 receptor alpha- deficient mice and their ligands interleukin-4/ interleukin-13 double deficient mice, on a Balb/c background. We demonstrate that while interleukin-4/ interleukin-13 double deficient mice are significantly impaired in both learning and reference memory, interleukin-4 receptor alpha-deficiency impairs only reference memory, compared to the wild-type control mice. In order to better understand how interleukin-4 receptor alpha- deficient mice are able to learn but not remember, we investigated the BDNF/TrkB- and the ARC-signaling pathways. We show that interleukin-4 receptor alpha-deficiency disrupts activation of BDNF/TrkB- and ARC-signaling pathways during reference memory, while the pathway for spatial learning is spared.