Cargando…

From Sequence Data to Patient Result: A Solution for HIV Drug Resistance Genotyping With Exatype, End to End Software for Pol-HIV-1 Sanger Based Sequence Analysis and Patient HIV Drug Resistance Result Generation

INTRODUCTION: With the rapid scale-up of antiretroviral therapy (ART) to treat HIV infection, there are ongoing concerns regarding probable emergence and transmission of HIV drug resistance (HIVDR) mutations. This scale-up has to lead to an increased need for routine HIVDR testing to inform the clin...

Descripción completa

Detalles Bibliográficos
Autores principales: Kingwara, Leonard, Karanja, Muthoni, Ngugi, Catherine, Kangogo, Geoffrey, Bera, Kipkerich, Kimani, Maureen, Bowen, Nancy, Abuya, Dorcus, Oramisi, Violet, Mukui, Irene
Formato: Online Artículo Texto
Lenguaje:English
Publicado: SAGE Publications 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7536479/
https://www.ncbi.nlm.nih.gov/pubmed/32990139
http://dx.doi.org/10.1177/2325958220962687
_version_ 1783590577097408512
author Kingwara, Leonard
Karanja, Muthoni
Ngugi, Catherine
Kangogo, Geoffrey
Bera, Kipkerich
Kimani, Maureen
Bowen, Nancy
Abuya, Dorcus
Oramisi, Violet
Mukui, Irene
author_facet Kingwara, Leonard
Karanja, Muthoni
Ngugi, Catherine
Kangogo, Geoffrey
Bera, Kipkerich
Kimani, Maureen
Bowen, Nancy
Abuya, Dorcus
Oramisi, Violet
Mukui, Irene
author_sort Kingwara, Leonard
collection PubMed
description INTRODUCTION: With the rapid scale-up of antiretroviral therapy (ART) to treat HIV infection, there are ongoing concerns regarding probable emergence and transmission of HIV drug resistance (HIVDR) mutations. This scale-up has to lead to an increased need for routine HIVDR testing to inform the clinical decision on a regimen switch. Although the majority of wet laboratory processes are standardized, slow, labor-intensive data transfer and subjective manual sequence interpretation steps are still required to finalize and release patient results. We thus set out to validate the applicability of a software package to generate HIVDR patient results from raw sequence data independently. METHODS: We assessed the performance characteristics of Hyrax Bioscience’s Exatype (a sequence data to patient result, fully automated sequence analysis software, which consolidates RECall, MEGA X and the Stanford HIV database) against the standard method (RECall and Stanford database). Exatype is a web-based HIV Drug resistance bioinformatic pipeline available at sanger.exatype.com. To validate the exatype, we used a test set of 135 remnant HIV viral load samples at the National HIV Reference Laboratory (NHRL). RESULT: We analyzed, and successfully generated results of 126 sequences out of 135 specimens by both Standard and Exatype software. Result production using Exatype required minimal hands-on time in comparison to the Standard (6 computation-hours using the standard method versus 1.5 Exatype computation-hours). Concordance between the 2 systems was 99.8% for 311,227 bases compared. 99.7% of the 0.2% discordant bases, were attributed to nucleotide mixtures as a result of the sequence editing in Recall. Both methods identified similar (99.1%) critical antiretroviral resistance-associated mutations resulting in a 99.2% concordance of resistance susceptibility interpretations. The Base-calling comparison between the 2 methods had Cohen’s kappa (0.97 to 0.99), implying an almost perfect agreement with minimal base calling variation. On a predefined dataset, RECall editing displayed the highest probability to score mixtures accurately 1 vs. 0.71 and the lowest chance to inaccurately assign mixtures to pure nucleotides (0.002–0.0008). This advantage is attributable to the manual sequence editing in RECall. CONCLUSION: The reduction in hands-on time needed is a benefit when using the Exatype HIV DR sequence analysis platform and result generation tool. There is a minimal difference in base calling between Exatype and standard methods. Although the discrepancy has minimal impact on drug resistance interpretation, allowance of sequence editing in Exatype as RECall can significantly improve its performance.
format Online
Article
Text
id pubmed-7536479
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher SAGE Publications
record_format MEDLINE/PubMed
spelling pubmed-75364792020-10-14 From Sequence Data to Patient Result: A Solution for HIV Drug Resistance Genotyping With Exatype, End to End Software for Pol-HIV-1 Sanger Based Sequence Analysis and Patient HIV Drug Resistance Result Generation Kingwara, Leonard Karanja, Muthoni Ngugi, Catherine Kangogo, Geoffrey Bera, Kipkerich Kimani, Maureen Bowen, Nancy Abuya, Dorcus Oramisi, Violet Mukui, Irene J Int Assoc Provid AIDS Care Original Article INTRODUCTION: With the rapid scale-up of antiretroviral therapy (ART) to treat HIV infection, there are ongoing concerns regarding probable emergence and transmission of HIV drug resistance (HIVDR) mutations. This scale-up has to lead to an increased need for routine HIVDR testing to inform the clinical decision on a regimen switch. Although the majority of wet laboratory processes are standardized, slow, labor-intensive data transfer and subjective manual sequence interpretation steps are still required to finalize and release patient results. We thus set out to validate the applicability of a software package to generate HIVDR patient results from raw sequence data independently. METHODS: We assessed the performance characteristics of Hyrax Bioscience’s Exatype (a sequence data to patient result, fully automated sequence analysis software, which consolidates RECall, MEGA X and the Stanford HIV database) against the standard method (RECall and Stanford database). Exatype is a web-based HIV Drug resistance bioinformatic pipeline available at sanger.exatype.com. To validate the exatype, we used a test set of 135 remnant HIV viral load samples at the National HIV Reference Laboratory (NHRL). RESULT: We analyzed, and successfully generated results of 126 sequences out of 135 specimens by both Standard and Exatype software. Result production using Exatype required minimal hands-on time in comparison to the Standard (6 computation-hours using the standard method versus 1.5 Exatype computation-hours). Concordance between the 2 systems was 99.8% for 311,227 bases compared. 99.7% of the 0.2% discordant bases, were attributed to nucleotide mixtures as a result of the sequence editing in Recall. Both methods identified similar (99.1%) critical antiretroviral resistance-associated mutations resulting in a 99.2% concordance of resistance susceptibility interpretations. The Base-calling comparison between the 2 methods had Cohen’s kappa (0.97 to 0.99), implying an almost perfect agreement with minimal base calling variation. On a predefined dataset, RECall editing displayed the highest probability to score mixtures accurately 1 vs. 0.71 and the lowest chance to inaccurately assign mixtures to pure nucleotides (0.002–0.0008). This advantage is attributable to the manual sequence editing in RECall. CONCLUSION: The reduction in hands-on time needed is a benefit when using the Exatype HIV DR sequence analysis platform and result generation tool. There is a minimal difference in base calling between Exatype and standard methods. Although the discrepancy has minimal impact on drug resistance interpretation, allowance of sequence editing in Exatype as RECall can significantly improve its performance. SAGE Publications 2020-09-29 /pmc/articles/PMC7536479/ /pubmed/32990139 http://dx.doi.org/10.1177/2325958220962687 Text en © The Author(s) 2020 https://creativecommons.org/licenses/by-nc/4.0/ This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).
spellingShingle Original Article
Kingwara, Leonard
Karanja, Muthoni
Ngugi, Catherine
Kangogo, Geoffrey
Bera, Kipkerich
Kimani, Maureen
Bowen, Nancy
Abuya, Dorcus
Oramisi, Violet
Mukui, Irene
From Sequence Data to Patient Result: A Solution for HIV Drug Resistance Genotyping With Exatype, End to End Software for Pol-HIV-1 Sanger Based Sequence Analysis and Patient HIV Drug Resistance Result Generation
title From Sequence Data to Patient Result: A Solution for HIV Drug Resistance Genotyping With Exatype, End to End Software for Pol-HIV-1 Sanger Based Sequence Analysis and Patient HIV Drug Resistance Result Generation
title_full From Sequence Data to Patient Result: A Solution for HIV Drug Resistance Genotyping With Exatype, End to End Software for Pol-HIV-1 Sanger Based Sequence Analysis and Patient HIV Drug Resistance Result Generation
title_fullStr From Sequence Data to Patient Result: A Solution for HIV Drug Resistance Genotyping With Exatype, End to End Software for Pol-HIV-1 Sanger Based Sequence Analysis and Patient HIV Drug Resistance Result Generation
title_full_unstemmed From Sequence Data to Patient Result: A Solution for HIV Drug Resistance Genotyping With Exatype, End to End Software for Pol-HIV-1 Sanger Based Sequence Analysis and Patient HIV Drug Resistance Result Generation
title_short From Sequence Data to Patient Result: A Solution for HIV Drug Resistance Genotyping With Exatype, End to End Software for Pol-HIV-1 Sanger Based Sequence Analysis and Patient HIV Drug Resistance Result Generation
title_sort from sequence data to patient result: a solution for hiv drug resistance genotyping with exatype, end to end software for pol-hiv-1 sanger based sequence analysis and patient hiv drug resistance result generation
topic Original Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7536479/
https://www.ncbi.nlm.nih.gov/pubmed/32990139
http://dx.doi.org/10.1177/2325958220962687
work_keys_str_mv AT kingwaraleonard fromsequencedatatopatientresultasolutionforhivdrugresistancegenotypingwithexatypeendtoendsoftwareforpolhiv1sangerbasedsequenceanalysisandpatienthivdrugresistanceresultgeneration
AT karanjamuthoni fromsequencedatatopatientresultasolutionforhivdrugresistancegenotypingwithexatypeendtoendsoftwareforpolhiv1sangerbasedsequenceanalysisandpatienthivdrugresistanceresultgeneration
AT ngugicatherine fromsequencedatatopatientresultasolutionforhivdrugresistancegenotypingwithexatypeendtoendsoftwareforpolhiv1sangerbasedsequenceanalysisandpatienthivdrugresistanceresultgeneration
AT kangogogeoffrey fromsequencedatatopatientresultasolutionforhivdrugresistancegenotypingwithexatypeendtoendsoftwareforpolhiv1sangerbasedsequenceanalysisandpatienthivdrugresistanceresultgeneration
AT berakipkerich fromsequencedatatopatientresultasolutionforhivdrugresistancegenotypingwithexatypeendtoendsoftwareforpolhiv1sangerbasedsequenceanalysisandpatienthivdrugresistanceresultgeneration
AT kimanimaureen fromsequencedatatopatientresultasolutionforhivdrugresistancegenotypingwithexatypeendtoendsoftwareforpolhiv1sangerbasedsequenceanalysisandpatienthivdrugresistanceresultgeneration
AT bowennancy fromsequencedatatopatientresultasolutionforhivdrugresistancegenotypingwithexatypeendtoendsoftwareforpolhiv1sangerbasedsequenceanalysisandpatienthivdrugresistanceresultgeneration
AT abuyadorcus fromsequencedatatopatientresultasolutionforhivdrugresistancegenotypingwithexatypeendtoendsoftwareforpolhiv1sangerbasedsequenceanalysisandpatienthivdrugresistanceresultgeneration
AT oramisiviolet fromsequencedatatopatientresultasolutionforhivdrugresistancegenotypingwithexatypeendtoendsoftwareforpolhiv1sangerbasedsequenceanalysisandpatienthivdrugresistanceresultgeneration
AT mukuiirene fromsequencedatatopatientresultasolutionforhivdrugresistancegenotypingwithexatypeendtoendsoftwareforpolhiv1sangerbasedsequenceanalysisandpatienthivdrugresistanceresultgeneration