Cargando…

Unsupervised Clustering of Missense Variants in HNF1A Using Multidimensional Functional Data Aids Clinical Interpretation

Exome sequencing in diabetes presents a diagnostic challenge because depending on frequency, functional impact, and genomic and environmental contexts, HNF1A variants can cause maturity-onset diabetes of the young (MODY), increase type 2 diabetes risk, or be benign. A correct diagnosis matters as it...

Descripción completa

Detalles Bibliográficos
Autores principales: Althari, Sara, Najmi, Laeya A., Bennett, Amanda J., Aukrust, Ingvild, Rundle, Jana K., Colclough, Kevin, Molnes, Janne, Kaci, Alba, Nawaz, Sameena, van der Lugt, Timme, Hassanali, Neelam, Mahajan, Anubha, Molven, Anders, Ellard, Sian, McCarthy, Mark I., Bjørkhaug, Lise, Njølstad, Pål Rasmus, Gloyn, Anna L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7536579/
https://www.ncbi.nlm.nih.gov/pubmed/32910913
http://dx.doi.org/10.1016/j.ajhg.2020.08.016
_version_ 1783590598943440896
author Althari, Sara
Najmi, Laeya A.
Bennett, Amanda J.
Aukrust, Ingvild
Rundle, Jana K.
Colclough, Kevin
Molnes, Janne
Kaci, Alba
Nawaz, Sameena
van der Lugt, Timme
Hassanali, Neelam
Mahajan, Anubha
Molven, Anders
Ellard, Sian
McCarthy, Mark I.
Bjørkhaug, Lise
Njølstad, Pål Rasmus
Gloyn, Anna L.
author_facet Althari, Sara
Najmi, Laeya A.
Bennett, Amanda J.
Aukrust, Ingvild
Rundle, Jana K.
Colclough, Kevin
Molnes, Janne
Kaci, Alba
Nawaz, Sameena
van der Lugt, Timme
Hassanali, Neelam
Mahajan, Anubha
Molven, Anders
Ellard, Sian
McCarthy, Mark I.
Bjørkhaug, Lise
Njølstad, Pål Rasmus
Gloyn, Anna L.
author_sort Althari, Sara
collection PubMed
description Exome sequencing in diabetes presents a diagnostic challenge because depending on frequency, functional impact, and genomic and environmental contexts, HNF1A variants can cause maturity-onset diabetes of the young (MODY), increase type 2 diabetes risk, or be benign. A correct diagnosis matters as it informs on treatment, progression, and family risk. We describe a multi-dimensional functional dataset of 73 HNF1A missense variants identified in exomes of 12,940 individuals. Our aim was to develop an analytical framework for stratifying variants along the HNF1A phenotypic continuum to facilitate diagnostic interpretation. HNF1A variant function was determined by four different molecular assays. Structure of the multi-dimensional dataset was explored using principal component analysis, k-means, and hierarchical clustering. Weights for tissue-specific isoform expression and functional domain were integrated. Functionally annotated variant subgroups were used to re-evaluate genetic diagnoses in national MODY diagnostic registries. HNF1A variants demonstrated a range of behaviors across the assays. The structure of the multi-parametric data was shaped primarily by transactivation. Using unsupervised learning methods, we obtained high-resolution functional clusters of the variants that separated known causal MODY variants from benign and type 2 diabetes risk variants and led to reclassification of 4% and 9% of HNF1A variants identified in the UK and Norway MODY diagnostic registries, respectively. Our proof-of-principle analyses facilitated informative stratification of HNF1A variants along the continuum, allowing improved evaluation of clinical significance, management, and precision medicine in diabetes clinics. Transcriptional activity appears a superior readout supporting pursuit of transactivation-centric experimental designs for high-throughput functional screens.
format Online
Article
Text
id pubmed-7536579
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-75365792021-04-01 Unsupervised Clustering of Missense Variants in HNF1A Using Multidimensional Functional Data Aids Clinical Interpretation Althari, Sara Najmi, Laeya A. Bennett, Amanda J. Aukrust, Ingvild Rundle, Jana K. Colclough, Kevin Molnes, Janne Kaci, Alba Nawaz, Sameena van der Lugt, Timme Hassanali, Neelam Mahajan, Anubha Molven, Anders Ellard, Sian McCarthy, Mark I. Bjørkhaug, Lise Njølstad, Pål Rasmus Gloyn, Anna L. Am J Hum Genet Article Exome sequencing in diabetes presents a diagnostic challenge because depending on frequency, functional impact, and genomic and environmental contexts, HNF1A variants can cause maturity-onset diabetes of the young (MODY), increase type 2 diabetes risk, or be benign. A correct diagnosis matters as it informs on treatment, progression, and family risk. We describe a multi-dimensional functional dataset of 73 HNF1A missense variants identified in exomes of 12,940 individuals. Our aim was to develop an analytical framework for stratifying variants along the HNF1A phenotypic continuum to facilitate diagnostic interpretation. HNF1A variant function was determined by four different molecular assays. Structure of the multi-dimensional dataset was explored using principal component analysis, k-means, and hierarchical clustering. Weights for tissue-specific isoform expression and functional domain were integrated. Functionally annotated variant subgroups were used to re-evaluate genetic diagnoses in national MODY diagnostic registries. HNF1A variants demonstrated a range of behaviors across the assays. The structure of the multi-parametric data was shaped primarily by transactivation. Using unsupervised learning methods, we obtained high-resolution functional clusters of the variants that separated known causal MODY variants from benign and type 2 diabetes risk variants and led to reclassification of 4% and 9% of HNF1A variants identified in the UK and Norway MODY diagnostic registries, respectively. Our proof-of-principle analyses facilitated informative stratification of HNF1A variants along the continuum, allowing improved evaluation of clinical significance, management, and precision medicine in diabetes clinics. Transcriptional activity appears a superior readout supporting pursuit of transactivation-centric experimental designs for high-throughput functional screens. Elsevier 2020-10-01 2020-09-09 /pmc/articles/PMC7536579/ /pubmed/32910913 http://dx.doi.org/10.1016/j.ajhg.2020.08.016 Text en © 2020 The Authors http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Althari, Sara
Najmi, Laeya A.
Bennett, Amanda J.
Aukrust, Ingvild
Rundle, Jana K.
Colclough, Kevin
Molnes, Janne
Kaci, Alba
Nawaz, Sameena
van der Lugt, Timme
Hassanali, Neelam
Mahajan, Anubha
Molven, Anders
Ellard, Sian
McCarthy, Mark I.
Bjørkhaug, Lise
Njølstad, Pål Rasmus
Gloyn, Anna L.
Unsupervised Clustering of Missense Variants in HNF1A Using Multidimensional Functional Data Aids Clinical Interpretation
title Unsupervised Clustering of Missense Variants in HNF1A Using Multidimensional Functional Data Aids Clinical Interpretation
title_full Unsupervised Clustering of Missense Variants in HNF1A Using Multidimensional Functional Data Aids Clinical Interpretation
title_fullStr Unsupervised Clustering of Missense Variants in HNF1A Using Multidimensional Functional Data Aids Clinical Interpretation
title_full_unstemmed Unsupervised Clustering of Missense Variants in HNF1A Using Multidimensional Functional Data Aids Clinical Interpretation
title_short Unsupervised Clustering of Missense Variants in HNF1A Using Multidimensional Functional Data Aids Clinical Interpretation
title_sort unsupervised clustering of missense variants in hnf1a using multidimensional functional data aids clinical interpretation
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7536579/
https://www.ncbi.nlm.nih.gov/pubmed/32910913
http://dx.doi.org/10.1016/j.ajhg.2020.08.016
work_keys_str_mv AT altharisara unsupervisedclusteringofmissensevariantsinhnf1ausingmultidimensionalfunctionaldataaidsclinicalinterpretation
AT najmilaeyaa unsupervisedclusteringofmissensevariantsinhnf1ausingmultidimensionalfunctionaldataaidsclinicalinterpretation
AT bennettamandaj unsupervisedclusteringofmissensevariantsinhnf1ausingmultidimensionalfunctionaldataaidsclinicalinterpretation
AT aukrustingvild unsupervisedclusteringofmissensevariantsinhnf1ausingmultidimensionalfunctionaldataaidsclinicalinterpretation
AT rundlejanak unsupervisedclusteringofmissensevariantsinhnf1ausingmultidimensionalfunctionaldataaidsclinicalinterpretation
AT colcloughkevin unsupervisedclusteringofmissensevariantsinhnf1ausingmultidimensionalfunctionaldataaidsclinicalinterpretation
AT molnesjanne unsupervisedclusteringofmissensevariantsinhnf1ausingmultidimensionalfunctionaldataaidsclinicalinterpretation
AT kacialba unsupervisedclusteringofmissensevariantsinhnf1ausingmultidimensionalfunctionaldataaidsclinicalinterpretation
AT nawazsameena unsupervisedclusteringofmissensevariantsinhnf1ausingmultidimensionalfunctionaldataaidsclinicalinterpretation
AT vanderlugttimme unsupervisedclusteringofmissensevariantsinhnf1ausingmultidimensionalfunctionaldataaidsclinicalinterpretation
AT hassanalineelam unsupervisedclusteringofmissensevariantsinhnf1ausingmultidimensionalfunctionaldataaidsclinicalinterpretation
AT mahajananubha unsupervisedclusteringofmissensevariantsinhnf1ausingmultidimensionalfunctionaldataaidsclinicalinterpretation
AT molvenanders unsupervisedclusteringofmissensevariantsinhnf1ausingmultidimensionalfunctionaldataaidsclinicalinterpretation
AT ellardsian unsupervisedclusteringofmissensevariantsinhnf1ausingmultidimensionalfunctionaldataaidsclinicalinterpretation
AT mccarthymarki unsupervisedclusteringofmissensevariantsinhnf1ausingmultidimensionalfunctionaldataaidsclinicalinterpretation
AT bjørkhauglise unsupervisedclusteringofmissensevariantsinhnf1ausingmultidimensionalfunctionaldataaidsclinicalinterpretation
AT njølstadpalrasmus unsupervisedclusteringofmissensevariantsinhnf1ausingmultidimensionalfunctionaldataaidsclinicalinterpretation
AT gloynannal unsupervisedclusteringofmissensevariantsinhnf1ausingmultidimensionalfunctionaldataaidsclinicalinterpretation