Cargando…
Automated Fall Detection Algorithm With Global Trigger Tool, Incident Reports, Manual Chart Review, and Patient-Reported Falls: Algorithm Development and Validation With a Retrospective Diagnostic Accuracy Study
BACKGROUND: Falls are common adverse events in hospitals, frequently leading to additional health costs due to prolonged stays and extra care. Therefore, reliable fall detection is vital to develop and test fall prevention strategies. However, conventional methods—voluntary incident reports and manu...
Autores principales: | Dolci, Elisa, Schärer, Barbara, Grossmann, Nicole, Musy, Sarah Naima, Zúñiga, Franziska, Bachnick, Stefanie, Simon, Michael |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7536608/ https://www.ncbi.nlm.nih.gov/pubmed/32955445 http://dx.doi.org/10.2196/19516 |
Ejemplares similares
-
Automated detection of near falls: algorithm development and preliminary results
por: Weiss, Aner, et al.
Publicado: (2010) -
Evaluation of Accelerometer-Based Fall Detection Algorithms on Real-World Falls
por: Bagalà, Fabio, et al.
Publicado: (2012) -
Novel Hierarchical Fall Detection Algorithm Using a Multiphase Fall Model
por: Hsieh, Chia-Yeh, et al.
Publicado: (2017) -
Enhanced Algorithm for the Detection of Preimpact Fall for Wearable Airbags
por: Jung, Haneul, et al.
Publicado: (2020) -
Strengthening tRansparent reporting of reseArch on uNfinished nursing CARE: The RANCARE guideline
por: Blatter, Catherine, et al.
Publicado: (2021)