Cargando…
Gene selection for optimal prediction of cell position in tissues from single-cell transcriptomics data
Single-cell RNA-sequencing (scRNAseq) technologies are rapidly evolving. Although very informative, in standard scRNAseq experiments, the spatial organization of the cells in the tissue of origin is lost. Conversely, spatial RNA-seq technologies designed to maintain cell localization have limited th...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Life Science Alliance LLC
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7536825/ https://www.ncbi.nlm.nih.gov/pubmed/32972997 http://dx.doi.org/10.26508/lsa.202000867 |
_version_ | 1783590623023988736 |
---|---|
author | Tanevski, Jovan Nguyen, Thin Truong, Buu Karaiskos, Nikos Ahsen, Mehmet Eren Zhang, Xinyu Shu, Chang Xu, Ke Liang, Xiaoyu Hu, Ying Pham, Hoang VV Xiaomei, Li Le, Thuc D Tarca, Adi L Bhatti, Gaurav Romero, Roberto Karathanasis, Nestoras Loher, Phillipe Chen, Yang Ouyang, Zhengqing Mao, Disheng Zhang, Yuping Zand, Maryam Ruan, Jianhua Hafemeister, Christoph Qiu, Peng Tran, Duc Nguyen, Tin Gabor, Attila Yu, Thomas Guinney, Justin Glaab, Enrico Krause, Roland Banda, Peter Stolovitzky, Gustavo Rajewsky, Nikolaus Saez-Rodriguez, Julio Meyer, Pablo |
author_facet | Tanevski, Jovan Nguyen, Thin Truong, Buu Karaiskos, Nikos Ahsen, Mehmet Eren Zhang, Xinyu Shu, Chang Xu, Ke Liang, Xiaoyu Hu, Ying Pham, Hoang VV Xiaomei, Li Le, Thuc D Tarca, Adi L Bhatti, Gaurav Romero, Roberto Karathanasis, Nestoras Loher, Phillipe Chen, Yang Ouyang, Zhengqing Mao, Disheng Zhang, Yuping Zand, Maryam Ruan, Jianhua Hafemeister, Christoph Qiu, Peng Tran, Duc Nguyen, Tin Gabor, Attila Yu, Thomas Guinney, Justin Glaab, Enrico Krause, Roland Banda, Peter Stolovitzky, Gustavo Rajewsky, Nikolaus Saez-Rodriguez, Julio Meyer, Pablo |
author_sort | Tanevski, Jovan |
collection | PubMed |
description | Single-cell RNA-sequencing (scRNAseq) technologies are rapidly evolving. Although very informative, in standard scRNAseq experiments, the spatial organization of the cells in the tissue of origin is lost. Conversely, spatial RNA-seq technologies designed to maintain cell localization have limited throughput and gene coverage. Mapping scRNAseq to genes with spatial information increases coverage while providing spatial location. However, methods to perform such mapping have not yet been benchmarked. To fill this gap, we organized the DREAM Single-Cell Transcriptomics challenge focused on the spatial reconstruction of cells from the Drosophila embryo from scRNAseq data, leveraging as silver standard, genes with in situ hybridization data from the Berkeley Drosophila Transcription Network Project reference atlas. The 34 participating teams used diverse algorithms for gene selection and location prediction, while being able to correctly localize clusters of cells. Selection of predictor genes was essential for this task. Predictor genes showed a relatively high expression entropy, high spatial clustering and included prominent developmental genes such as gap and pair-rule genes and tissue markers. Application of the top 10 methods to a zebra fish embryo dataset yielded similar performance and statistical properties of the selected genes than in the Drosophila data. This suggests that methods developed in this challenge are able to extract generalizable properties of genes that are useful to accurately reconstruct the spatial arrangement of cells in tissues. |
format | Online Article Text |
id | pubmed-7536825 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Life Science Alliance LLC |
record_format | MEDLINE/PubMed |
spelling | pubmed-75368252020-10-14 Gene selection for optimal prediction of cell position in tissues from single-cell transcriptomics data Tanevski, Jovan Nguyen, Thin Truong, Buu Karaiskos, Nikos Ahsen, Mehmet Eren Zhang, Xinyu Shu, Chang Xu, Ke Liang, Xiaoyu Hu, Ying Pham, Hoang VV Xiaomei, Li Le, Thuc D Tarca, Adi L Bhatti, Gaurav Romero, Roberto Karathanasis, Nestoras Loher, Phillipe Chen, Yang Ouyang, Zhengqing Mao, Disheng Zhang, Yuping Zand, Maryam Ruan, Jianhua Hafemeister, Christoph Qiu, Peng Tran, Duc Nguyen, Tin Gabor, Attila Yu, Thomas Guinney, Justin Glaab, Enrico Krause, Roland Banda, Peter Stolovitzky, Gustavo Rajewsky, Nikolaus Saez-Rodriguez, Julio Meyer, Pablo Life Sci Alliance Research Articles Single-cell RNA-sequencing (scRNAseq) technologies are rapidly evolving. Although very informative, in standard scRNAseq experiments, the spatial organization of the cells in the tissue of origin is lost. Conversely, spatial RNA-seq technologies designed to maintain cell localization have limited throughput and gene coverage. Mapping scRNAseq to genes with spatial information increases coverage while providing spatial location. However, methods to perform such mapping have not yet been benchmarked. To fill this gap, we organized the DREAM Single-Cell Transcriptomics challenge focused on the spatial reconstruction of cells from the Drosophila embryo from scRNAseq data, leveraging as silver standard, genes with in situ hybridization data from the Berkeley Drosophila Transcription Network Project reference atlas. The 34 participating teams used diverse algorithms for gene selection and location prediction, while being able to correctly localize clusters of cells. Selection of predictor genes was essential for this task. Predictor genes showed a relatively high expression entropy, high spatial clustering and included prominent developmental genes such as gap and pair-rule genes and tissue markers. Application of the top 10 methods to a zebra fish embryo dataset yielded similar performance and statistical properties of the selected genes than in the Drosophila data. This suggests that methods developed in this challenge are able to extract generalizable properties of genes that are useful to accurately reconstruct the spatial arrangement of cells in tissues. Life Science Alliance LLC 2020-09-25 /pmc/articles/PMC7536825/ /pubmed/32972997 http://dx.doi.org/10.26508/lsa.202000867 Text en © 2020 Tanevski et al. https://creativecommons.org/licenses/by/4.0/This article is available under a Creative Commons License (Attribution 4.0 International, as described at https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Research Articles Tanevski, Jovan Nguyen, Thin Truong, Buu Karaiskos, Nikos Ahsen, Mehmet Eren Zhang, Xinyu Shu, Chang Xu, Ke Liang, Xiaoyu Hu, Ying Pham, Hoang VV Xiaomei, Li Le, Thuc D Tarca, Adi L Bhatti, Gaurav Romero, Roberto Karathanasis, Nestoras Loher, Phillipe Chen, Yang Ouyang, Zhengqing Mao, Disheng Zhang, Yuping Zand, Maryam Ruan, Jianhua Hafemeister, Christoph Qiu, Peng Tran, Duc Nguyen, Tin Gabor, Attila Yu, Thomas Guinney, Justin Glaab, Enrico Krause, Roland Banda, Peter Stolovitzky, Gustavo Rajewsky, Nikolaus Saez-Rodriguez, Julio Meyer, Pablo Gene selection for optimal prediction of cell position in tissues from single-cell transcriptomics data |
title | Gene selection for optimal prediction of cell position in tissues from single-cell transcriptomics data |
title_full | Gene selection for optimal prediction of cell position in tissues from single-cell transcriptomics data |
title_fullStr | Gene selection for optimal prediction of cell position in tissues from single-cell transcriptomics data |
title_full_unstemmed | Gene selection for optimal prediction of cell position in tissues from single-cell transcriptomics data |
title_short | Gene selection for optimal prediction of cell position in tissues from single-cell transcriptomics data |
title_sort | gene selection for optimal prediction of cell position in tissues from single-cell transcriptomics data |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7536825/ https://www.ncbi.nlm.nih.gov/pubmed/32972997 http://dx.doi.org/10.26508/lsa.202000867 |
work_keys_str_mv | AT tanevskijovan geneselectionforoptimalpredictionofcellpositionintissuesfromsinglecelltranscriptomicsdata AT nguyenthin geneselectionforoptimalpredictionofcellpositionintissuesfromsinglecelltranscriptomicsdata AT truongbuu geneselectionforoptimalpredictionofcellpositionintissuesfromsinglecelltranscriptomicsdata AT karaiskosnikos geneselectionforoptimalpredictionofcellpositionintissuesfromsinglecelltranscriptomicsdata AT ahsenmehmeteren geneselectionforoptimalpredictionofcellpositionintissuesfromsinglecelltranscriptomicsdata AT zhangxinyu geneselectionforoptimalpredictionofcellpositionintissuesfromsinglecelltranscriptomicsdata AT shuchang geneselectionforoptimalpredictionofcellpositionintissuesfromsinglecelltranscriptomicsdata AT xuke geneselectionforoptimalpredictionofcellpositionintissuesfromsinglecelltranscriptomicsdata AT liangxiaoyu geneselectionforoptimalpredictionofcellpositionintissuesfromsinglecelltranscriptomicsdata AT huying geneselectionforoptimalpredictionofcellpositionintissuesfromsinglecelltranscriptomicsdata AT phamhoangvv geneselectionforoptimalpredictionofcellpositionintissuesfromsinglecelltranscriptomicsdata AT xiaomeili geneselectionforoptimalpredictionofcellpositionintissuesfromsinglecelltranscriptomicsdata AT lethucd geneselectionforoptimalpredictionofcellpositionintissuesfromsinglecelltranscriptomicsdata AT tarcaadil geneselectionforoptimalpredictionofcellpositionintissuesfromsinglecelltranscriptomicsdata AT bhattigaurav geneselectionforoptimalpredictionofcellpositionintissuesfromsinglecelltranscriptomicsdata AT romeroroberto geneselectionforoptimalpredictionofcellpositionintissuesfromsinglecelltranscriptomicsdata AT karathanasisnestoras geneselectionforoptimalpredictionofcellpositionintissuesfromsinglecelltranscriptomicsdata AT loherphillipe geneselectionforoptimalpredictionofcellpositionintissuesfromsinglecelltranscriptomicsdata AT chenyang geneselectionforoptimalpredictionofcellpositionintissuesfromsinglecelltranscriptomicsdata AT ouyangzhengqing geneselectionforoptimalpredictionofcellpositionintissuesfromsinglecelltranscriptomicsdata AT maodisheng geneselectionforoptimalpredictionofcellpositionintissuesfromsinglecelltranscriptomicsdata AT zhangyuping geneselectionforoptimalpredictionofcellpositionintissuesfromsinglecelltranscriptomicsdata AT zandmaryam geneselectionforoptimalpredictionofcellpositionintissuesfromsinglecelltranscriptomicsdata AT ruanjianhua geneselectionforoptimalpredictionofcellpositionintissuesfromsinglecelltranscriptomicsdata AT hafemeisterchristoph geneselectionforoptimalpredictionofcellpositionintissuesfromsinglecelltranscriptomicsdata AT qiupeng geneselectionforoptimalpredictionofcellpositionintissuesfromsinglecelltranscriptomicsdata AT tranduc geneselectionforoptimalpredictionofcellpositionintissuesfromsinglecelltranscriptomicsdata AT nguyentin geneselectionforoptimalpredictionofcellpositionintissuesfromsinglecelltranscriptomicsdata AT gaborattila geneselectionforoptimalpredictionofcellpositionintissuesfromsinglecelltranscriptomicsdata AT yuthomas geneselectionforoptimalpredictionofcellpositionintissuesfromsinglecelltranscriptomicsdata AT guinneyjustin geneselectionforoptimalpredictionofcellpositionintissuesfromsinglecelltranscriptomicsdata AT glaabenrico geneselectionforoptimalpredictionofcellpositionintissuesfromsinglecelltranscriptomicsdata AT krauseroland geneselectionforoptimalpredictionofcellpositionintissuesfromsinglecelltranscriptomicsdata AT bandapeter geneselectionforoptimalpredictionofcellpositionintissuesfromsinglecelltranscriptomicsdata AT geneselectionforoptimalpredictionofcellpositionintissuesfromsinglecelltranscriptomicsdata AT stolovitzkygustavo geneselectionforoptimalpredictionofcellpositionintissuesfromsinglecelltranscriptomicsdata AT rajewskynikolaus geneselectionforoptimalpredictionofcellpositionintissuesfromsinglecelltranscriptomicsdata AT saezrodriguezjulio geneselectionforoptimalpredictionofcellpositionintissuesfromsinglecelltranscriptomicsdata AT meyerpablo geneselectionforoptimalpredictionofcellpositionintissuesfromsinglecelltranscriptomicsdata |