Cargando…

Gene selection for optimal prediction of cell position in tissues from single-cell transcriptomics data

Single-cell RNA-sequencing (scRNAseq) technologies are rapidly evolving. Although very informative, in standard scRNAseq experiments, the spatial organization of the cells in the tissue of origin is lost. Conversely, spatial RNA-seq technologies designed to maintain cell localization have limited th...

Descripción completa

Detalles Bibliográficos
Autores principales: Tanevski, Jovan, Nguyen, Thin, Truong, Buu, Karaiskos, Nikos, Ahsen, Mehmet Eren, Zhang, Xinyu, Shu, Chang, Xu, Ke, Liang, Xiaoyu, Hu, Ying, Pham, Hoang VV, Xiaomei, Li, Le, Thuc D, Tarca, Adi L, Bhatti, Gaurav, Romero, Roberto, Karathanasis, Nestoras, Loher, Phillipe, Chen, Yang, Ouyang, Zhengqing, Mao, Disheng, Zhang, Yuping, Zand, Maryam, Ruan, Jianhua, Hafemeister, Christoph, Qiu, Peng, Tran, Duc, Nguyen, Tin, Gabor, Attila, Yu, Thomas, Guinney, Justin, Glaab, Enrico, Krause, Roland, Banda, Peter, Stolovitzky, Gustavo, Rajewsky, Nikolaus, Saez-Rodriguez, Julio, Meyer, Pablo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Life Science Alliance LLC 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7536825/
https://www.ncbi.nlm.nih.gov/pubmed/32972997
http://dx.doi.org/10.26508/lsa.202000867
_version_ 1783590623023988736
author Tanevski, Jovan
Nguyen, Thin
Truong, Buu
Karaiskos, Nikos
Ahsen, Mehmet Eren
Zhang, Xinyu
Shu, Chang
Xu, Ke
Liang, Xiaoyu
Hu, Ying
Pham, Hoang VV
Xiaomei, Li
Le, Thuc D
Tarca, Adi L
Bhatti, Gaurav
Romero, Roberto
Karathanasis, Nestoras
Loher, Phillipe
Chen, Yang
Ouyang, Zhengqing
Mao, Disheng
Zhang, Yuping
Zand, Maryam
Ruan, Jianhua
Hafemeister, Christoph
Qiu, Peng
Tran, Duc
Nguyen, Tin
Gabor, Attila
Yu, Thomas
Guinney, Justin
Glaab, Enrico
Krause, Roland
Banda, Peter
Stolovitzky, Gustavo
Rajewsky, Nikolaus
Saez-Rodriguez, Julio
Meyer, Pablo
author_facet Tanevski, Jovan
Nguyen, Thin
Truong, Buu
Karaiskos, Nikos
Ahsen, Mehmet Eren
Zhang, Xinyu
Shu, Chang
Xu, Ke
Liang, Xiaoyu
Hu, Ying
Pham, Hoang VV
Xiaomei, Li
Le, Thuc D
Tarca, Adi L
Bhatti, Gaurav
Romero, Roberto
Karathanasis, Nestoras
Loher, Phillipe
Chen, Yang
Ouyang, Zhengqing
Mao, Disheng
Zhang, Yuping
Zand, Maryam
Ruan, Jianhua
Hafemeister, Christoph
Qiu, Peng
Tran, Duc
Nguyen, Tin
Gabor, Attila
Yu, Thomas
Guinney, Justin
Glaab, Enrico
Krause, Roland
Banda, Peter
Stolovitzky, Gustavo
Rajewsky, Nikolaus
Saez-Rodriguez, Julio
Meyer, Pablo
author_sort Tanevski, Jovan
collection PubMed
description Single-cell RNA-sequencing (scRNAseq) technologies are rapidly evolving. Although very informative, in standard scRNAseq experiments, the spatial organization of the cells in the tissue of origin is lost. Conversely, spatial RNA-seq technologies designed to maintain cell localization have limited throughput and gene coverage. Mapping scRNAseq to genes with spatial information increases coverage while providing spatial location. However, methods to perform such mapping have not yet been benchmarked. To fill this gap, we organized the DREAM Single-Cell Transcriptomics challenge focused on the spatial reconstruction of cells from the Drosophila embryo from scRNAseq data, leveraging as silver standard, genes with in situ hybridization data from the Berkeley Drosophila Transcription Network Project reference atlas. The 34 participating teams used diverse algorithms for gene selection and location prediction, while being able to correctly localize clusters of cells. Selection of predictor genes was essential for this task. Predictor genes showed a relatively high expression entropy, high spatial clustering and included prominent developmental genes such as gap and pair-rule genes and tissue markers. Application of the top 10 methods to a zebra fish embryo dataset yielded similar performance and statistical properties of the selected genes than in the Drosophila data. This suggests that methods developed in this challenge are able to extract generalizable properties of genes that are useful to accurately reconstruct the spatial arrangement of cells in tissues.
format Online
Article
Text
id pubmed-7536825
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Life Science Alliance LLC
record_format MEDLINE/PubMed
spelling pubmed-75368252020-10-14 Gene selection for optimal prediction of cell position in tissues from single-cell transcriptomics data Tanevski, Jovan Nguyen, Thin Truong, Buu Karaiskos, Nikos Ahsen, Mehmet Eren Zhang, Xinyu Shu, Chang Xu, Ke Liang, Xiaoyu Hu, Ying Pham, Hoang VV Xiaomei, Li Le, Thuc D Tarca, Adi L Bhatti, Gaurav Romero, Roberto Karathanasis, Nestoras Loher, Phillipe Chen, Yang Ouyang, Zhengqing Mao, Disheng Zhang, Yuping Zand, Maryam Ruan, Jianhua Hafemeister, Christoph Qiu, Peng Tran, Duc Nguyen, Tin Gabor, Attila Yu, Thomas Guinney, Justin Glaab, Enrico Krause, Roland Banda, Peter Stolovitzky, Gustavo Rajewsky, Nikolaus Saez-Rodriguez, Julio Meyer, Pablo Life Sci Alliance Research Articles Single-cell RNA-sequencing (scRNAseq) technologies are rapidly evolving. Although very informative, in standard scRNAseq experiments, the spatial organization of the cells in the tissue of origin is lost. Conversely, spatial RNA-seq technologies designed to maintain cell localization have limited throughput and gene coverage. Mapping scRNAseq to genes with spatial information increases coverage while providing spatial location. However, methods to perform such mapping have not yet been benchmarked. To fill this gap, we organized the DREAM Single-Cell Transcriptomics challenge focused on the spatial reconstruction of cells from the Drosophila embryo from scRNAseq data, leveraging as silver standard, genes with in situ hybridization data from the Berkeley Drosophila Transcription Network Project reference atlas. The 34 participating teams used diverse algorithms for gene selection and location prediction, while being able to correctly localize clusters of cells. Selection of predictor genes was essential for this task. Predictor genes showed a relatively high expression entropy, high spatial clustering and included prominent developmental genes such as gap and pair-rule genes and tissue markers. Application of the top 10 methods to a zebra fish embryo dataset yielded similar performance and statistical properties of the selected genes than in the Drosophila data. This suggests that methods developed in this challenge are able to extract generalizable properties of genes that are useful to accurately reconstruct the spatial arrangement of cells in tissues. Life Science Alliance LLC 2020-09-25 /pmc/articles/PMC7536825/ /pubmed/32972997 http://dx.doi.org/10.26508/lsa.202000867 Text en © 2020 Tanevski et al. https://creativecommons.org/licenses/by/4.0/This article is available under a Creative Commons License (Attribution 4.0 International, as described at https://creativecommons.org/licenses/by/4.0/).
spellingShingle Research Articles
Tanevski, Jovan
Nguyen, Thin
Truong, Buu
Karaiskos, Nikos
Ahsen, Mehmet Eren
Zhang, Xinyu
Shu, Chang
Xu, Ke
Liang, Xiaoyu
Hu, Ying
Pham, Hoang VV
Xiaomei, Li
Le, Thuc D
Tarca, Adi L
Bhatti, Gaurav
Romero, Roberto
Karathanasis, Nestoras
Loher, Phillipe
Chen, Yang
Ouyang, Zhengqing
Mao, Disheng
Zhang, Yuping
Zand, Maryam
Ruan, Jianhua
Hafemeister, Christoph
Qiu, Peng
Tran, Duc
Nguyen, Tin
Gabor, Attila
Yu, Thomas
Guinney, Justin
Glaab, Enrico
Krause, Roland
Banda, Peter
Stolovitzky, Gustavo
Rajewsky, Nikolaus
Saez-Rodriguez, Julio
Meyer, Pablo
Gene selection for optimal prediction of cell position in tissues from single-cell transcriptomics data
title Gene selection for optimal prediction of cell position in tissues from single-cell transcriptomics data
title_full Gene selection for optimal prediction of cell position in tissues from single-cell transcriptomics data
title_fullStr Gene selection for optimal prediction of cell position in tissues from single-cell transcriptomics data
title_full_unstemmed Gene selection for optimal prediction of cell position in tissues from single-cell transcriptomics data
title_short Gene selection for optimal prediction of cell position in tissues from single-cell transcriptomics data
title_sort gene selection for optimal prediction of cell position in tissues from single-cell transcriptomics data
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7536825/
https://www.ncbi.nlm.nih.gov/pubmed/32972997
http://dx.doi.org/10.26508/lsa.202000867
work_keys_str_mv AT tanevskijovan geneselectionforoptimalpredictionofcellpositionintissuesfromsinglecelltranscriptomicsdata
AT nguyenthin geneselectionforoptimalpredictionofcellpositionintissuesfromsinglecelltranscriptomicsdata
AT truongbuu geneselectionforoptimalpredictionofcellpositionintissuesfromsinglecelltranscriptomicsdata
AT karaiskosnikos geneselectionforoptimalpredictionofcellpositionintissuesfromsinglecelltranscriptomicsdata
AT ahsenmehmeteren geneselectionforoptimalpredictionofcellpositionintissuesfromsinglecelltranscriptomicsdata
AT zhangxinyu geneselectionforoptimalpredictionofcellpositionintissuesfromsinglecelltranscriptomicsdata
AT shuchang geneselectionforoptimalpredictionofcellpositionintissuesfromsinglecelltranscriptomicsdata
AT xuke geneselectionforoptimalpredictionofcellpositionintissuesfromsinglecelltranscriptomicsdata
AT liangxiaoyu geneselectionforoptimalpredictionofcellpositionintissuesfromsinglecelltranscriptomicsdata
AT huying geneselectionforoptimalpredictionofcellpositionintissuesfromsinglecelltranscriptomicsdata
AT phamhoangvv geneselectionforoptimalpredictionofcellpositionintissuesfromsinglecelltranscriptomicsdata
AT xiaomeili geneselectionforoptimalpredictionofcellpositionintissuesfromsinglecelltranscriptomicsdata
AT lethucd geneselectionforoptimalpredictionofcellpositionintissuesfromsinglecelltranscriptomicsdata
AT tarcaadil geneselectionforoptimalpredictionofcellpositionintissuesfromsinglecelltranscriptomicsdata
AT bhattigaurav geneselectionforoptimalpredictionofcellpositionintissuesfromsinglecelltranscriptomicsdata
AT romeroroberto geneselectionforoptimalpredictionofcellpositionintissuesfromsinglecelltranscriptomicsdata
AT karathanasisnestoras geneselectionforoptimalpredictionofcellpositionintissuesfromsinglecelltranscriptomicsdata
AT loherphillipe geneselectionforoptimalpredictionofcellpositionintissuesfromsinglecelltranscriptomicsdata
AT chenyang geneselectionforoptimalpredictionofcellpositionintissuesfromsinglecelltranscriptomicsdata
AT ouyangzhengqing geneselectionforoptimalpredictionofcellpositionintissuesfromsinglecelltranscriptomicsdata
AT maodisheng geneselectionforoptimalpredictionofcellpositionintissuesfromsinglecelltranscriptomicsdata
AT zhangyuping geneselectionforoptimalpredictionofcellpositionintissuesfromsinglecelltranscriptomicsdata
AT zandmaryam geneselectionforoptimalpredictionofcellpositionintissuesfromsinglecelltranscriptomicsdata
AT ruanjianhua geneselectionforoptimalpredictionofcellpositionintissuesfromsinglecelltranscriptomicsdata
AT hafemeisterchristoph geneselectionforoptimalpredictionofcellpositionintissuesfromsinglecelltranscriptomicsdata
AT qiupeng geneselectionforoptimalpredictionofcellpositionintissuesfromsinglecelltranscriptomicsdata
AT tranduc geneselectionforoptimalpredictionofcellpositionintissuesfromsinglecelltranscriptomicsdata
AT nguyentin geneselectionforoptimalpredictionofcellpositionintissuesfromsinglecelltranscriptomicsdata
AT gaborattila geneselectionforoptimalpredictionofcellpositionintissuesfromsinglecelltranscriptomicsdata
AT yuthomas geneselectionforoptimalpredictionofcellpositionintissuesfromsinglecelltranscriptomicsdata
AT guinneyjustin geneselectionforoptimalpredictionofcellpositionintissuesfromsinglecelltranscriptomicsdata
AT glaabenrico geneselectionforoptimalpredictionofcellpositionintissuesfromsinglecelltranscriptomicsdata
AT krauseroland geneselectionforoptimalpredictionofcellpositionintissuesfromsinglecelltranscriptomicsdata
AT bandapeter geneselectionforoptimalpredictionofcellpositionintissuesfromsinglecelltranscriptomicsdata
AT geneselectionforoptimalpredictionofcellpositionintissuesfromsinglecelltranscriptomicsdata
AT stolovitzkygustavo geneselectionforoptimalpredictionofcellpositionintissuesfromsinglecelltranscriptomicsdata
AT rajewskynikolaus geneselectionforoptimalpredictionofcellpositionintissuesfromsinglecelltranscriptomicsdata
AT saezrodriguezjulio geneselectionforoptimalpredictionofcellpositionintissuesfromsinglecelltranscriptomicsdata
AT meyerpablo geneselectionforoptimalpredictionofcellpositionintissuesfromsinglecelltranscriptomicsdata