Cargando…
Evaluating the plausible application of advanced machine learnings in exploring determinant factors of present pandemic: A case for continent specific COVID-19 analysis
Coronavirus disease, a novel severe acute respiratory syndrome (SARS COVID-19), has become a global health concern due to its unpredictable nature and lack of adequate medicines. Machine Learning (ML) models could be effective in identifying the most critical factors which are responsible for the ov...
Autores principales: | Chakraborti, Suman, Maiti, Arabinda, Pramanik, Suvamoy, Sannigrahi, Srikanta, Pilla, Francesco, Banerjee, Anushna, Das, Dipendra Nath |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier B.V.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7537593/ https://www.ncbi.nlm.nih.gov/pubmed/33077215 http://dx.doi.org/10.1016/j.scitotenv.2020.142723 |
Ejemplares similares
-
Exploring spatiotemporal effects of the driving factors on COVID-19 incidences in the contiguous United States
por: Maiti, Arabinda, et al.
Publicado: (2021) -
Examining the status of forest fire emission in 2020 and its connection to COVID-19 incidents in West Coast regions of the United States
por: Sannigrahi, Srikanta, et al.
Publicado: (2022) -
Examining the association between socio-demographic composition and COVID-19 fatalities in the European region using spatial regression approach
por: Sannigrahi, Srikanta, et al.
Publicado: (2020) -
Examining the status of improved air quality in world cities due to COVID-19 led temporary reduction in anthropogenic emissions
por: Sannigrahi, Srikanta, et al.
Publicado: (2021) -
Plausibility or Honesty?
Publicado: (1890)