Cargando…
A Novel Butanol Tolerance-Promoting Function of the Transcription Factor Rob in Escherichia coli
Producing high concentrations of biobutanol is challenging, primarily because of the toxicity of butanol toward cells. In our previous study, several butanol tolerance-promoting genes were identified from butanol-tolerant Escherichia coli mutants and inactivation of the transcriptional regulator fac...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7537768/ https://www.ncbi.nlm.nih.gov/pubmed/33072717 http://dx.doi.org/10.3389/fbioe.2020.524198 |
_version_ | 1783590731266392064 |
---|---|
author | Wang, Zhiquan Xue, Tingli Hu, Dongsheng Ma, Yuanyuan |
author_facet | Wang, Zhiquan Xue, Tingli Hu, Dongsheng Ma, Yuanyuan |
author_sort | Wang, Zhiquan |
collection | PubMed |
description | Producing high concentrations of biobutanol is challenging, primarily because of the toxicity of butanol toward cells. In our previous study, several butanol tolerance-promoting genes were identified from butanol-tolerant Escherichia coli mutants and inactivation of the transcriptional regulator factor Rob was shown to improve butanol tolerance. Here, the butanol tolerance characteristics and mechanism regulated by inactivated Rob are investigated. Comparative transcriptome analysis of strain DTrob, with a truncated rob in the genome, and the control BW25113 revealed 285 differentially expressed genes (DEGs) to be associated with butanol tolerance and categorized as having transport, localization, and oxidoreductase activities. Expression of 25 DEGs representing different functional categories was analyzed by quantitative reverse transcription PCR (qRT-PCR) to assess the reliability of the RNA-Seq data, and 92% of the genes showed the same expression trend. Based on functional complementation experiments of key DEGs, deletions of glgS and yibT increased the butanol tolerance of E. coli, whereas overexpression of fadB resulted in increased cell density and a slight increase in butanol tolerance. A metabolic network analysis of these DEGs revealed that six genes (fadA, fadB, fadD, fadL, poxB, and acs) associated with acetyl-CoA production were significantly upregulated in DTrob, suggesting that Rob inactivation might enhance butanol tolerance by increasing acetyl-CoA. Interestingly, DTrob produced more acetate in response to butanol stress than the wild-type strain, resulting in the upregulation expression of some genes involved in acetate metabolism. Altogether, the results of this study reveal the mechanism underlying increased butanol tolerance in E. coli regulated by Rob inactivation. |
format | Online Article Text |
id | pubmed-7537768 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-75377682020-10-16 A Novel Butanol Tolerance-Promoting Function of the Transcription Factor Rob in Escherichia coli Wang, Zhiquan Xue, Tingli Hu, Dongsheng Ma, Yuanyuan Front Bioeng Biotechnol Bioengineering and Biotechnology Producing high concentrations of biobutanol is challenging, primarily because of the toxicity of butanol toward cells. In our previous study, several butanol tolerance-promoting genes were identified from butanol-tolerant Escherichia coli mutants and inactivation of the transcriptional regulator factor Rob was shown to improve butanol tolerance. Here, the butanol tolerance characteristics and mechanism regulated by inactivated Rob are investigated. Comparative transcriptome analysis of strain DTrob, with a truncated rob in the genome, and the control BW25113 revealed 285 differentially expressed genes (DEGs) to be associated with butanol tolerance and categorized as having transport, localization, and oxidoreductase activities. Expression of 25 DEGs representing different functional categories was analyzed by quantitative reverse transcription PCR (qRT-PCR) to assess the reliability of the RNA-Seq data, and 92% of the genes showed the same expression trend. Based on functional complementation experiments of key DEGs, deletions of glgS and yibT increased the butanol tolerance of E. coli, whereas overexpression of fadB resulted in increased cell density and a slight increase in butanol tolerance. A metabolic network analysis of these DEGs revealed that six genes (fadA, fadB, fadD, fadL, poxB, and acs) associated with acetyl-CoA production were significantly upregulated in DTrob, suggesting that Rob inactivation might enhance butanol tolerance by increasing acetyl-CoA. Interestingly, DTrob produced more acetate in response to butanol stress than the wild-type strain, resulting in the upregulation expression of some genes involved in acetate metabolism. Altogether, the results of this study reveal the mechanism underlying increased butanol tolerance in E. coli regulated by Rob inactivation. Frontiers Media S.A. 2020-09-22 /pmc/articles/PMC7537768/ /pubmed/33072717 http://dx.doi.org/10.3389/fbioe.2020.524198 Text en Copyright © 2020 Wang, Xue, Hu and Ma. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Bioengineering and Biotechnology Wang, Zhiquan Xue, Tingli Hu, Dongsheng Ma, Yuanyuan A Novel Butanol Tolerance-Promoting Function of the Transcription Factor Rob in Escherichia coli |
title | A Novel Butanol Tolerance-Promoting Function of the Transcription Factor Rob in Escherichia coli |
title_full | A Novel Butanol Tolerance-Promoting Function of the Transcription Factor Rob in Escherichia coli |
title_fullStr | A Novel Butanol Tolerance-Promoting Function of the Transcription Factor Rob in Escherichia coli |
title_full_unstemmed | A Novel Butanol Tolerance-Promoting Function of the Transcription Factor Rob in Escherichia coli |
title_short | A Novel Butanol Tolerance-Promoting Function of the Transcription Factor Rob in Escherichia coli |
title_sort | novel butanol tolerance-promoting function of the transcription factor rob in escherichia coli |
topic | Bioengineering and Biotechnology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7537768/ https://www.ncbi.nlm.nih.gov/pubmed/33072717 http://dx.doi.org/10.3389/fbioe.2020.524198 |
work_keys_str_mv | AT wangzhiquan anovelbutanoltolerancepromotingfunctionofthetranscriptionfactorrobinescherichiacoli AT xuetingli anovelbutanoltolerancepromotingfunctionofthetranscriptionfactorrobinescherichiacoli AT hudongsheng anovelbutanoltolerancepromotingfunctionofthetranscriptionfactorrobinescherichiacoli AT mayuanyuan anovelbutanoltolerancepromotingfunctionofthetranscriptionfactorrobinescherichiacoli AT wangzhiquan novelbutanoltolerancepromotingfunctionofthetranscriptionfactorrobinescherichiacoli AT xuetingli novelbutanoltolerancepromotingfunctionofthetranscriptionfactorrobinescherichiacoli AT hudongsheng novelbutanoltolerancepromotingfunctionofthetranscriptionfactorrobinescherichiacoli AT mayuanyuan novelbutanoltolerancepromotingfunctionofthetranscriptionfactorrobinescherichiacoli |