Cargando…
DeepCycle reconstructs a cyclic cell cycle trajectory from unsegmented cell images using convolutional neural networks
The advent of single‐cell methods is paving the way for an in‐depth understanding of the cell cycle with unprecedented detail. Due to its ramifications in nearly all biological processes, the evaluation of cell cycle progression is critical for an exhaustive cellular characterization. Here, we prese...
Autores principales: | Rappez, Luca, Rakhlin, Alexander, Rigopoulos, Angelos, Nikolenko, Sergey, Alexandrov, Theodore |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7537830/ https://www.ncbi.nlm.nih.gov/pubmed/33022142 http://dx.doi.org/10.15252/msb.20209474 |
Ejemplares similares
-
ColocML: machine learning quantifies co-localization between mass spectrometry images
por: Ovchinnikova, Katja, et al.
Publicado: (2020) -
Particle identification in the longitudinally unsegmented RD52 calorimeter
por: Akchurin, N, et al.
Publicado: (2014) -
Online recognition of unsegmented actions with hierarchical SOM architecture
por: Gharaee, Zahra
Publicado: (2020) -
Calibration in process monitoring by using
unsegmented continuous-flow systems
por: de Castro, M. D. Luque, et al.
Publicado: (1989) -
Cytochemical Localisations and Ultrastructure in the Fertilized Unsegmented Egg of Paracentrotus lividus
por: Pasteels, J. J., et al.
Publicado: (1958)