Cargando…

Deep learning: To better understand how human activities affect the value of ecosystem services—A case study of Nanjing

The value of ecosystem services is affected by increasing human activities. However, the anthropogenic driving mechanisms of ecosystem services are poorly understood. Here, we established a deep learning model to approximate the ecosystem service value (ESV) of Nanjing City using 23 socioeconomic fa...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Chang, Qi, Yi, Wang, Zhenbo, Yu, Junlan, Li, Shan, Yao, Hong, Ni, Tianhua
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7537890/
https://www.ncbi.nlm.nih.gov/pubmed/33021994
http://dx.doi.org/10.1371/journal.pone.0238789
Descripción
Sumario:The value of ecosystem services is affected by increasing human activities. However, the anthropogenic driving mechanisms of ecosystem services are poorly understood. Here, we established a deep learning model to approximate the ecosystem service value (ESV) of Nanjing City using 23 socioeconomic factors. A multi-view analysis was then conducted on feasible impact mechanisms using model disassembly. The results indicated that certain factors had their own significant and independent effects on ESV, such as the proportion of water areas in the land-use structure and the output value of the secondary industry. The proportion of ecological water should be increased as much as possible, whereas the output value of the secondary industry should be reasonably controlled in Nanjing. Other intrinsically related factors were likely to be composited together to affect ESV, such as industrial water consumption and industrial electricity consumption. In Nanjing, simultaneously optimizing socio-economic factors related to city size, resources, and energy use efficiency likely represents an effective management strategy for maintaining and enhancing regional ecological service capabilities. The results of this work suggest that deep learning is an effective method of deepening studies on the prediction of ESV trends and human-driven mechanisms.