Cargando…
Relationships between Pacific salmon and aquatic and terrestrial ecosystems: implications for ecosystem‐based management
Pacific salmon influence temperate terrestrial and freshwater ecosystems through the dispersal of marine‐derived nutrients and ecosystem engineering of stream beds when spawning. They also support large fisheries, particularly along the west coast of North America. We provide a comprehensive synthes...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7537986/ https://www.ncbi.nlm.nih.gov/pubmed/32266971 http://dx.doi.org/10.1002/ecy.3060 |
Sumario: | Pacific salmon influence temperate terrestrial and freshwater ecosystems through the dispersal of marine‐derived nutrients and ecosystem engineering of stream beds when spawning. They also support large fisheries, particularly along the west coast of North America. We provide a comprehensive synthesis of relationships between the densities of Pacific salmon and terrestrial and aquatic ecosystems, summarize the direction, shape, and magnitude of these relationships, and identify possible ecosystem‐based management indicators and benchmarks. We found 31 studies that provided 172 relationships between salmon density (or salmon abundance) and species abundance, species diversity, food provisioning, individual growth, concentration of marine‐derived isotopes, nutrient enhancement, phenology, and several other ecological responses. The most common published relationship was between salmon density and marine‐derived isotopes (40%), whereas very few relationships quantified ecosystem‐level responses (5%). Only 13% of all relationships tended to reach an asymptote (i.e., a saturating response) as salmon densities increased. The number of salmon killed by bears and the change in biomass of different stream invertebrate taxa between spawning and nonspawning seasons were relationships that usually reached saturation. Approximately 46% of all relationships were best described with linear or curved nonasymptotic models, indicating a lack of saturation. In contrast, 41% of data sets showed no relationship with salmon density or abundance, including many of the relationships with stream invertebrate and biofilm biomass density, marine‐derived isotope concentrations, or vegetation density. Bears required the highest densities of salmon to reach their maximum observed food consumption (i.e., 9.2 kg/m(2) to reach the 90% threshold of the relationship’s asymptote), followed by freshwater fish abundance (90% threshold = 7.3 kg/m(2) of salmon). Although the effects of salmon density on ecosystems are highly varied, it appears that several of these relationships, such as bear food consumption, could be used to develop indicators and benchmarks for ecosystem‐based fisheries management. |
---|