Cargando…
Deep learning for automatic quantification of lung abnormalities in COVID-19 patients: First experience and correlation with clinical parameters
RATIONALE AND OBJECTIVES: To demonstrate the first experience of a deep learning-based algorithm for automatic quantification of lung parenchymal abnormalities in chest CT of COVID-19 patients and to correlate quantitative results with clinical and laboratory parameters. MATERIALS AND METHODS: We re...
Autores principales: | Mergen, Victor, Kobe, Adrian, Blüthgen, Christian, Euler, André, Flohr, Thomas, Frauenfelder, Thomas, Alkadhi, Hatem, Eberhard, Matthias |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7538094/ https://www.ncbi.nlm.nih.gov/pubmed/33043101 http://dx.doi.org/10.1016/j.ejro.2020.100272 |
Ejemplares similares
-
Coronary Calcium Scoring with First Generation Dual-Source Photon-Counting CT—First Evidence from Phantom and In-Vivo Scans
por: Eberhard, Matthias, et al.
Publicado: (2021) -
Quantum Iterative Reconstruction for Low-Dose Ultra-High-Resolution Photon-Counting Detector CT of the Lung
por: Sartoretti, Thomas, et al.
Publicado: (2022) -
First in-human quantitative plaque characterization with ultra-high resolution coronary photon-counting CT angiography
por: Mergen, Victor, et al.
Publicado: (2022) -
Myocardial extracellular volume quantification with computed tomography—current status and future outlook
por: Cundari, Giulia, et al.
Publicado: (2023) -
Extracellular Volume Quantification With Cardiac Late Enhancement Scanning Using Dual-Source Photon-Counting Detector CT
por: Mergen, Victor, et al.
Publicado: (2022)