Cargando…
Protease circuits for processing biological information
Engineered biocircuits designed with biological components have the capacity to expand and augment living functions. Here we demonstrate that proteases can be integrated into digital or analog biocircuits to process biological information. We first construct peptide-caged liposomes that treat protea...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7538567/ https://www.ncbi.nlm.nih.gov/pubmed/33024117 http://dx.doi.org/10.1038/s41467-020-18840-8 |
Sumario: | Engineered biocircuits designed with biological components have the capacity to expand and augment living functions. Here we demonstrate that proteases can be integrated into digital or analog biocircuits to process biological information. We first construct peptide-caged liposomes that treat protease activity as two-valued (i.e., signal is 0 or 1) operations to construct the biological equivalent of Boolean logic gates, comparators and analog-to-digital converters. We use these modules to assemble a cell-free biocircuit that can combine with bacteria-containing blood, quantify bacteria burden, and then calculate and unlock a selective drug dose. By contrast, we treat protease activity as multi-valued (i.e., signal is between 0 and 1) by controlling the degree to which a pool of enzymes is shared between two target substrates. We perform operations on these analog values by manipulating substrate concentrations and combine these operations to solve the mathematical problem Learning Parity with Noise (LPN). These results show that protease activity can be used to process biological information by binary Boolean logic, or as multi-valued analog signals under conditions where substrate resources are shared. |
---|