Cargando…
Rapid demulsification of pickering emulsions triggered by controllable magnetic field
Pickering emulsions with on–off properties provide significant advantages over simple solid-stabilized emulsions for the development of novel materials, such as oil-displacing agents for enhanced oil recovery and templates for the fabrication of porous materials. However, the irreversible adsorption...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7538568/ https://www.ncbi.nlm.nih.gov/pubmed/33024159 http://dx.doi.org/10.1038/s41598-020-73551-w |
Sumario: | Pickering emulsions with on–off properties provide significant advantages over simple solid-stabilized emulsions for the development of novel materials, such as oil-displacing agents for enhanced oil recovery and templates for the fabrication of porous materials. However, the irreversible adsorption of particles as emulsion stabilizers endows the Pickering emulsions with kinetically stable property, resulting in a huge challenge to break the stability. Here we fabricated microscale Pickering emulsions, by the use of paramagnetic particles, which possess excellent stability for several months and more interestingly perform complete demulsification under controllable magnetic fields in several minutes. The alternating asymmetrical magnetic field endows oil-in-water droplets ‘‘big’’ N and S poles on the outer particle layers, and attracts the solid particles to the bottom of the vial after the coalescence and the deformation of the droplets, bringing the prevention of re-emulsion and the cyclic utilization. This facile strategy to produce stable Pickering emulsions with a magnetic-response opens a promising avenue for various practical applications including oil recovery, wastewater treatment, and sludge removal. |
---|