Cargando…
Machine Learning Approaches for MDD Detection and Emotion Decoding Using EEG Signals
Emotional decoding and automatic identification of major depressive disorder (MDD) are helpful for the timely diagnosis of the disease. Electroencephalography (EEG) is sensitive to changes in the functional state of the human brain, showing its potential to help doctors diagnose MDD. In this paper,...
Autores principales: | Duan, Lijuan, Duan, Huifeng, Qiao, Yuanhua, Sha, Sha, Qi, Shunai, Zhang, Xiaolong, Huang, Juan, Huang, Xiaohan, Wang, Changming |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7538713/ https://www.ncbi.nlm.nih.gov/pubmed/33173472 http://dx.doi.org/10.3389/fnhum.2020.00284 |
Ejemplares similares
-
Decoding Intracranial EEG With Machine Learning: A Systematic Review
por: Mirchi, Nykan, et al.
Publicado: (2022) -
Cross-Dataset Variability Problem in EEG Decoding With Deep Learning
por: Xu, Lichao, et al.
Publicado: (2020) -
A Novel Sleep Staging Network Based on Data Adaptation and Multimodal Fusion
por: Duan, Lijuan, et al.
Publicado: (2021) -
A State-of-the-Art Review of EEG-Based Imagined Speech Decoding
por: Lopez-Bernal, Diego, et al.
Publicado: (2022) -
Decoding EEG Brain Activity for Multi-Modal Natural Language Processing
por: Hollenstein, Nora, et al.
Publicado: (2021)